Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1972 Apr;110(1):236–245. doi: 10.1128/jb.110.1.236-245.1972

Bacteriolytic Enzymes Produced by Myxococcus xanthus

Sara Sudo 1, Martin Dworkin 1
PMCID: PMC247403  PMID: 4622898

Abstract

The bacteriolytic activities in the culture fluid of Myxococcus xanthus were purified and separated into six active fractions by the use of Bio-Gel CM-2 and Bio-Gel P-60. These fractions were identified as: (i) an amidase, (ii) a glucosaminidase, (iii) a glucosaminidase and an amidase, (iv) a protease with probable amidase activity, (v) another protease with probable amidase activity, and (vi) a peptidase active on both d-alanyl-diaminopimelate and d-alanyl-lysine peptide bonds. On one occasion, another amidase was eluted from Bio-Gel CM. Preliminary studies on some characteristics of the enzymes and their production during growth are reported.

Full text

PDF
236

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BERNLOHR R. W. POSTLOGARITHMIC PHASE METABOLISM OF SPORULATING MICROORGANISMS. I. PROTEASE OF BACILLUS LICHENIFORMIS. J Biol Chem. 1964 Feb;239:538–543. [PubMed] [Google Scholar]
  2. DWORKIN M. Nutritional requirements for vegetative growth of Myxococcus xanthus. J Bacteriol. 1962 Aug;84:250–257. doi: 10.1128/jb.84.2.250-257.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dworkin M. Biology of the myxobacteria. Annu Rev Microbiol. 1966;20:75–106. doi: 10.1146/annurev.mi.20.100166.000451. [DOI] [PubMed] [Google Scholar]
  4. ENSIGN J. C., WOLFE R. S. LYSIS OF BACTERIAL CELL WALLS BY AN ENZYME ISOLATED FROM A MYXOBACTER. J Bacteriol. 1965 Aug;90:395–402. doi: 10.1128/jb.90.2.395-402.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ensign J. C., Wolfe R. S. Characterization of a small proteolytic enzyme which lyses bacterial cell walls. J Bacteriol. 1966 Feb;91(2):524–534. doi: 10.1128/jb.91.2.524-534.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. GILLESPIE D. C., COOK F. D. EXTRACELLULAR ENZYMES FROM STRAINS OF SORANGIUM. Can J Microbiol. 1965 Feb;11:109–118. doi: 10.1139/m65-014. [DOI] [PubMed] [Google Scholar]
  7. Ghuysen J. M., Dierickx L., Coyette J., Leyh-Bouille M., Guinand M., Campbell J. N. An improved technique for the preparation of Streptomyces peptidases and N-acetylmuramyl-l-alanine amidase active on bacterial wall peptidoglycans. Biochemistry. 1969 Jan;8(1):213–222. doi: 10.1021/bi00829a031. [DOI] [PubMed] [Google Scholar]
  8. Hart B. A., Zahler S. A. Lytic enzyme produced by Myxococcus xanthus. J Bacteriol. 1966 Dec;92(6):1632–1637. doi: 10.1128/jb.92.6.1632-1637.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hüttermann A., Kühlwein H. Uber ein bakteriolytisches Enzym von Archangium violaceum (Myxobacteriales). I. Messungen in vivo. Arch Mikrobiol. 1969;65(2):105–114. [PubMed] [Google Scholar]
  10. Hüttermann A. Studies on a bacteriolytic enzyme of Archangium violaceum (Myxobacteriales). II. Partial purification and properties of the enzyme. Arch Mikrobiol. 1969;67(4):306–317. doi: 10.1007/BF00412578. [DOI] [PubMed] [Google Scholar]
  11. Jackson R. L., Wolfe R. S. Composition, properties, and substrate specificities of Myxobacter AL-1 protease. J Biol Chem. 1968 Mar 10;243(5):879–888. [PubMed] [Google Scholar]
  12. Jurásek L., Whitaker D. R. Lytic enzymes of Sorangium sp. A comparison of some physical properties of the alpha- and beta-lytic proteases. Can J Biochem. 1965 Dec;43(12):1955–1960. doi: 10.1139/o65-218. [DOI] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. MARTIN R. G., AMES B. N. A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J Biol Chem. 1961 May;236:1372–1379. [PubMed] [Google Scholar]
  15. PARK J. T., HANCOCK R. A fractionation procedure for studies of the synthesis of cell-wall mucopeptide and of other polymers in cells of Staphylococcus aureus. J Gen Microbiol. 1960 Feb;22:249–258. doi: 10.1099/00221287-22-1-249. [DOI] [PubMed] [Google Scholar]
  16. Petit J. F., Munoz E., Ghuysen J. M. Peptide cross-links in bacterial cell wall peptidoglycans studied with specific endopeptidases from Streptomyces albus G. Biochemistry. 1966 Aug;5(8):2764–2776. doi: 10.1021/bi00872a037. [DOI] [PubMed] [Google Scholar]
  17. Thompson J. S., Shockman G. D. A modification of the Park and Johnson reducing sugar determination suitable for the assay of insoluble materials: its application to bacterial cell walls. Anal Biochem. 1968 Feb;22(2):260–268. doi: 10.1016/0003-2697(68)90315-1. [DOI] [PubMed] [Google Scholar]
  18. Tipper D. J., Strominger J. L., Ensign J. C. Structure of the cell wall of Staphylococcus aureus, strain Copenhagen. VII. Mode of action of the bacteriolytic peptidase from Myxobacter and the isolation of intact cell wall polysaccharides. Biochemistry. 1967 Mar;6(3):906–920. doi: 10.1021/bi00855a035. [DOI] [PubMed] [Google Scholar]
  19. Tsai C. S., Whitaker D. R., Jurásek L., Gillespie D. C. Lytic enzymes of Sorangium sp. Action of the alpha- and beta-lytic proteases on two bacterial mucopeptides. Can J Biochem. 1965 Dec;43(12):1971–1983. doi: 10.1139/o65-220. [DOI] [PubMed] [Google Scholar]
  20. Whitaker D. R. Lytic enzymes of Sorangium sp. Isolation and enzymatic properties of the alpha- and beta-lytic proteases. Can J Biochem. 1965 Dec;43(12):1935–1954. doi: 10.1139/o65-217. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES