Abstract
Accumulation of 3H-tetracycline in nonproliferating cells of susceptible and resistant strains of Escherichia coli and Staphylococcus aureus in tris(hydroxymethyl)aminomethane (Tris) buffer (10 mm, pH 7.5) was significantly decreased in the presence of 5 to 40 mm MgCl2 and increased in the presence of 5 to 10 mm MnCl2. When the bacteria first accumulated 3H-tetracycline in plain Tris·HCl, and the metal salts were thereafter added, a prompt decrease or increase in radioactivity of the cells was observed after the addition of Mg2+ or Mn2+, respectively. In phosphate buffer (10 mm, pH 7.5), the effect of Mg2+ was delayed. Three minutes after addition of 3H-tetracycline, uptake was as in the control cell suspension, but thereafter it dropped rapidly. When 3H-tetracycline was incubated with Mg2+ before addition to the bacterial suspension, uptake was scarcely measurable. The addition of Mg2+ to growing cultures of S. aureus and E. coli caused a marked decrease in susceptibility; in contrast, no increase in susceptibility could be demonstrated when Mn2+ was added. It was also demonstrated that Mg2+ and Mn2+ had distinct influences on the absorption spectrum, the optical rotatory dispersion, the circular dichroism, and the lipid solubility of tetracycline.
Full text
PDF![468](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e78/247437/5a689e39b5a3/jbacter00361-0028.png)
![469](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e78/247437/39149fdc3758/jbacter00361-0029.png)
![470](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e78/247437/19d98bc92b81/jbacter00361-0030.png)
![471](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e78/247437/654568e849a3/jbacter00361-0031.png)
![472](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e78/247437/c28237ff0e86/jbacter00361-0032.png)
![473](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e78/247437/3f8c9b04f58a/jbacter00361-0033.png)
![474](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e78/247437/8648359b0bbf/jbacter00361-0034.png)
![475](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e78/247437/aecf7ca58cbb/jbacter00361-0035.png)
![476](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e78/247437/9ad919e6e378/jbacter00361-0036.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALBERT A., REES C. W. Avidity of the tetracyclines for the cations of metals. Nature. 1956 Mar 3;177(4505):433–434. doi: 10.1038/177433a0. [DOI] [PubMed] [Google Scholar]
- Avtalion R. R., Ziegler-Schlomowitz R., Pearl M., Wojdani A., Sompolinsky D. Depressed resistance to tetracycline in Staphylococcus aureus. Microbios. 1971 Mar;3(10):165–180. [PubMed] [Google Scholar]
- CONNAMACHER R. H., MANDEL H. G. BINDING OF TETRACYCLINE TO THE 30S RIBOSOMES AND TO POLYURIDYLIC ACID. Biochem Biophys Res Commun. 1965 Jun 18;20:98–103. doi: 10.1016/0006-291x(65)90954-x. [DOI] [PubMed] [Google Scholar]
- Colaizzi J. L., Klink P. R. pH-Partition behavior of tetracyclines. J Pharm Sci. 1969 Oct;58(10):1184–1189. doi: 10.1002/jps.2600581003. [DOI] [PubMed] [Google Scholar]
- DAVIS B. D., MINGIOLI E. S. Mutants of Escherichia coli requiring methionine or vitamin B12. J Bacteriol. 1950 Jul;60(1):17–28. doi: 10.1128/jb.60.1.17-28.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Zeeuw J. R. Accumulation of tetracyclines by Escherichia coli. J Bacteriol. 1968 Feb;95(2):498–506. doi: 10.1128/jb.95.2.498-506.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dunnick J. K., O'Leary W. M. Correlation of bacteria lipid composition with antibiotic resistance. J Bacteriol. 1970 Mar;101(3):892–900. doi: 10.1128/jb.101.3.892-900.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Franklin T. J., Higginson B. Active accumulation of tetracycline by Escherichia coli. Biochem J. 1970 Jan;116(2):287–297. doi: 10.1042/bj1160287. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Franklin T. J. Resistance of Escherichia coli to tetracyclines. Changes in permeability to tetracyclines in Escherichia coli bearing transferable resistance factors. Biochem J. 1967 Oct;105(1):371–378. doi: 10.1042/bj1050371. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GRAY W. D., HILL R. T., WINNE R., CUNNINGHAM R. W. The enhancement of chlortetracycline absorption by citric acid. J Pharmacol Exp Ther. 1954 Mar;110(3):327–333. [PubMed] [Google Scholar]
- Hutchings B. L. Tetracycline transport in Staphylococcus aureus H. Biochim Biophys Acta. 1969 Feb 18;174(2):734–748. doi: 10.1016/0005-2787(69)90302-5. [DOI] [PubMed] [Google Scholar]
- IZAKI K., ARIMA K. EFFECT OF VARIOUS CONDITIONS ON ACCUMULATION OF OXYTETRACYCLINE IN ESCHERICHIA COLI. J Bacteriol. 1965 May;89:1335–1339. doi: 10.1128/jb.89.5.1335-1339.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Izaki K., Kiuchi K., Arima K. Specificity and mechanism of tetracycline resistance in a multiple drug resistant strain of Escherichia coli. J Bacteriol. 1966 Feb;91(2):628–633. doi: 10.1128/jb.91.2.628-633.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laskin A. I., May Chan W. Inhibition by tetracyclines of polyuridylic acid directed phenylalanine incorporation in Escherichia coli cell-free systems. Biochem Biophys Res Commun. 1964;14:137–142. doi: 10.1016/0006-291x(64)90243-8. [DOI] [PubMed] [Google Scholar]
- Mitscher L. A., Bonacci A. C., Slater-Eng B., Hacker A. K., Sokoloski T. D. Interaction of various tetracyclines with metallic cations in aqueous solutions as measured by by circular dichroism. Antimicrob Agents Chemother (Bethesda) 1969;9:111–115. [PubMed] [Google Scholar]
- Mitscher L. A., Bonacci A. C., Sokoloski T. D. Circular dichroism and solution conformation of the tetracycline antibiotics. Tetrahedron Lett. 1968 Oct;(51):5361–5364. doi: 10.1016/s0040-4039(00)75384-6. [DOI] [PubMed] [Google Scholar]
- Mitscher L. A., Bonacci A. C., Sokoloski T. D. Circular dichroism and solution conformation of the tetracycline antibiotics. Antimicrob Agents Chemother (Bethesda) 1968;8:78–86. [PubMed] [Google Scholar]
- SAZ A. K., SLIE R. B. Reversal of aureomycin inhibition of bacterial cell-free nitro reductase by manganese. J Biol Chem. 1954 Sep;210(1):407–412. [PubMed] [Google Scholar]
- SONCIN E. Fenomeni di interferenza tra elettroliti e antibiotici. III. Ione magnesio e aureomicina, terramicina, cloramfenicolo. Arch Int Pharmacodyn Ther. 1953 Jul;94(3):346–352. [PubMed] [Google Scholar]
- Sompolinski D., Ben-Yakov M., Aboud M., Boldur I. Transferable resistance factors with mutator effect in Salmonella typhi. Mutat Res. 1967 Mar-Apr;4(2):119–127. doi: 10.1016/0027-5107(67)90063-2. [DOI] [PubMed] [Google Scholar]
- Sompolinsky D., Krawitz T., Zaidenzaig Y., Abramova N. Inducible resistance to tetracycline in Staphylococcus aureus. J Gen Microbiol. 1970 Aug;62(3):341–349. doi: 10.1099/00221287-62-3-341. [DOI] [PubMed] [Google Scholar]
- Sompolinsky D., Samra Z. Mechanism of high-level resistance to chloramphenicol in different Escherichia coli variants. J Gen Microbiol. 1968 Jan;50(1):55–66. doi: 10.1099/00221287-50-1-55. [DOI] [PubMed] [Google Scholar]
- Sompolinsky D., Zaidenzaig Y., Ziegler-Schlomowitz R., Abramova N. Mechanism of tetracycline resistance in Staphylococcus aureus. J Gen Microbiol. 1970 Aug;62(3):351–362. doi: 10.1099/00221287-62-3-351. [DOI] [PubMed] [Google Scholar]
- VAN METER J. C., SPECTOR A., OLESON J. J., WILLIAMS J. H. In vitro action of aureomycin on oxidative phosphorylation in animal tissues. Proc Soc Exp Biol Med. 1952 Oct;81(1):215–217. doi: 10.3181/00379727-81-19825. [DOI] [PubMed] [Google Scholar]