Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1972 Jun;110(3):852–856. doi: 10.1128/jb.110.3.852-856.1972

Dependence of Cell Division on the Completion of Chromosome Replication in Caulobacter crescentus

Suzanne T Degnen 1, Austin Newton 1
PMCID: PMC247502  PMID: 5030621

Abstract

The relationship between chromosome replication and cell division in the stalked bacterium Caulobacter crescentus has been investigated. Two compounds, hydroxyurea and mitomycin C, were found to inhibit completely deoxyribonucleic acid (DNA) synthesis while allowing continued cell growth and elongation. When these inhibitors were added to exponentially growing cultures, cell division stopped after 38 min when hydroxyurea was used and after 33 min when mitomycin C was used. The period of continued cell division corresponds closely to the period previously determined for the postsynthetic gap (G2) in the DNA cycle of this organism. These results indicate that cell division is coupled to the completion of chromosome replication in C. crescentus.

Full text

PDF
853

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Clark D. J. The regulation of DNA replication and cell division in E. coli B-r. Cold Spring Harb Symp Quant Biol. 1968;33:823–838. doi: 10.1101/sqb.1968.033.01.094. [DOI] [PubMed] [Google Scholar]
  2. Donachie W. D., Martin D. T., Begg K. J. Independence of cell division and DNA replication in Bacillus subtilis. Nat New Biol. 1971 Jun 30;231(26):274–276. doi: 10.1038/newbio231274a0. [DOI] [PubMed] [Google Scholar]
  3. GOSS W. A., DEITZ W. H., COOK T. M. MECHANISM OF ACTION OF NALIDIXIC ACID ON ESCHERICHIA COLI.II. INHIBITION OF DEOXYRIBONUCLEIC ACID SYNTHESIS. J Bacteriol. 1965 Apr;89:1068–1074. doi: 10.1128/jb.89.4.1068-1074.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Helmstetter C. E., Pierucci O. Cell division during inhibition of deoxyribonucleic acid synthesis in Escherichia coli. J Bacteriol. 1968 May;95(5):1627–1633. doi: 10.1128/jb.95.5.1627-1633.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Lark K. G., Lark C. Regulation of chromosome replication in Escherichia coli: a comparison of the effects of phenethyl alcohol treatment with those of amino acid starvation. J Mol Biol. 1966 Sep;20(1):9–19. doi: 10.1016/0022-2836(66)90113-6. [DOI] [PubMed] [Google Scholar]
  6. Newton A. Role of transcription in the temporal control of development in Caulobacter crescentus (stalk-rifampin-RNA synthesis-DNA synthesis-motility). Proc Natl Acad Sci U S A. 1972 Feb;69(2):447–451. doi: 10.1073/pnas.69.2.447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. POINDEXTER J. S. BIOLOGICAL PROPERTIES AND CLASSIFICATION OF THE CAULOBACTER GROUP. Bacteriol Rev. 1964 Sep;28:231–295. doi: 10.1128/br.28.3.231-295.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. PUCK T. T. STUDIES OF THE LIFE CYCLE OF MAMMALIAN CELLS. Cold Spring Harb Symp Quant Biol. 1964;29:167–176. doi: 10.1101/sqb.1964.029.01.021. [DOI] [PubMed] [Google Scholar]
  9. Rosenkranz H. S., Garro A. J., Levy J. A., Carr H. S. Studies with hydroxyurea. I. The reversible inhibition of bacterial DNA synthesis and the effect of hydroxyurea on the bactericidal action of streptomycin. Biochim Biophys Acta. 1966 Mar 21;114(3):501–515. [PubMed] [Google Scholar]
  10. Shapiro L., Agabian-Keshishian N., Bendis I. Bacterial differentiation. Science. 1971 Sep 3;173(4000):884–892. doi: 10.1126/science.173.4000.884. [DOI] [PubMed] [Google Scholar]
  11. TANAKA N., YAMAGUCHI H., UMEZAWA H. Mechanism of action of phleomycin, a tumor-inhibitory antibiotic. Biochem Biophys Res Commun. 1963 Jan 31;10:171–174. doi: 10.1016/0006-291x(63)90045-7. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES