Abstract
Cell-free extracts of Bacillus subtilis strains GSY and 168 convert 14C-phosphoglycerate to 14C-serine phosphate and 14C-serine. These reactions indicate a functional phosphorylated pathway for serine biosynthesis in these cells. The addition of serine to the incubation mixture inhibited the formation of both radioactive products. Extracts of mutant strains that require serine for growth lacked the capacity to synthesize serine phosphate, confirming that the phosphorylated pathway was the only functional pathway available for serine synthesis. Serine phosphate phosphatase and phosphoglycerate dehydrogenase activity were demonstrated in cell extracts, and the phosphoglycerate dehydrogenase was shown to be inhibited specifically by l-serine. The extent of serine inhibition increased when the temperature was raised from 25 to 37 C, and the thermal stability of the enzyme was enhanced by the presence of the inhibitor serine or the coenzyme reduced nicotinamide adenine dinucleotide. At 37 C the curve representing the relationship between phosphoglycerate concentration and enzyme velocity was biphasic, and the serine inhibition which was competitive at low substrate concentrations became noncompetitive at higher concentrations.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- BORKENHAGEN L. F., KENNEDY E. P. The enzymatic exchange of L-serine with O-phospho-L-serine catalyzed by a specific phosphatase. J Biol Chem. 1959 Apr;234(4):849–853. [PubMed] [Google Scholar]
- Burns R. O., Zarlengo M. H. Threonine deaminase from Salmonella typhimurium. I. Purification and properties. J Biol Chem. 1968 Jan 10;243(1):178–185. [PubMed] [Google Scholar]
- GREENBERG D. M., ICHIHARA A. Further studies on the pathway of serine formation from carbohydrate. J Biol Chem. 1957 Jan;224(1):331–340. [PubMed] [Google Scholar]
- Hanson R. S., Cox D. P. Effect of different nutritional conditions on the synthesis of tricarboxylic acid cycle enzymes. J Bacteriol. 1967 Jun;93(6):1777–1787. doi: 10.1128/jb.93.6.1777-1787.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harder W., Quayle J. R. The biosynthesis of serine and glycine in Pseudomonas AM1 with special reference to growth on carbon sources other than C1 compounds. Biochem J. 1971 Mar;121(5):753–762. doi: 10.1042/bj1210753. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hatfield G. W., Umbarger H. E. Threonine deaminase from Bacillus subtilis. II. The steady state kinetic properties. J Biol Chem. 1970 Apr 10;245(7):1742–1747. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Levitzki A., Koshland D. E., Jr Negative cooperativity in regulatory enzymes. Proc Natl Acad Sci U S A. 1969 Apr;62(4):1121–1128. doi: 10.1073/pnas.62.4.1121. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NEUHAUS F. C., BYRNE W. L. Metabolism of phosphoserine. III. Mechanism of O-phosphoserine phosphatase. J Biol Chem. 1960 Jul;235:2019–2024. [PubMed] [Google Scholar]
- Nelson J. D., Jr, Naylor H. B. Control of serine biosynthesis in Micrococcus lysodeikticus: inhibition of phosphoglyceric acid dehydrogenase. Can J Microbiol. 1971 Jan;17(1):25–30. doi: 10.1139/m71-005. [DOI] [PubMed] [Google Scholar]
- Nelson J. D., Jr, Naylor H. B. The synthesis of L-serine by Micrococcus lysodeikticus. Can J Microbiol. 1971 Jan;17(1):73–77. doi: 10.1139/m71-012. [DOI] [PubMed] [Google Scholar]
- PIZER L. I. ENZYMOLOGY AND REGULATION OF SERINE BIOSYNTHESIS IN CULTURED HUMAN CELLS. J Biol Chem. 1964 Dec;239:4219–4226. [PubMed] [Google Scholar]
- PIZER L. I. THE PATHWAY AND CONTROL OF SERINE BIOSYNTHESIS IN ESCHERICHIA COLI. J Biol Chem. 1963 Dec;238:3934–3944. [PubMed] [Google Scholar]
- Pizer L. I. Comparative enzymology of serine biosynthesis in mammalian systems. Biochim Biophys Acta. 1966 Aug 24;124(2):418–420. doi: 10.1016/0304-4165(66)90212-1. [DOI] [PubMed] [Google Scholar]
- Pizer L. I., Ponce-de-Leon M., Michalka J. Serine biosynthesis and regulation in Haemophilus influenzae. J Bacteriol. 1969 Mar;97(3):1357–1361. doi: 10.1128/jb.97.3.1357-1361.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spizizen J. TRANSFORMATION OF BIOCHEMICALLY DEFICIENT STRAINS OF BACILLUS SUBTILIS BY DEOXYRIBONUCLEATE. Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1072–1078. doi: 10.1073/pnas.44.10.1072. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sugimoto E., Pizer L. I. The mechanism of end product inhibition of serine biosynthesis. I. Purification and kinetics of phosphoglycerate dehydrogenase. J Biol Chem. 1968 May 10;243(9):2081–2089. [PubMed] [Google Scholar]
- Tempest D. W., Meers J. L., Brown C. M. Influence of environment on the content and composition of microbial free amino acid pools. J Gen Microbiol. 1970 Dec;64(2):171–185. doi: 10.1099/00221287-64-2-171. [DOI] [PubMed] [Google Scholar]
- UMBARGER H. E., UMBARGER M. A., SIU P. M. BIOSYNTHESIS OF SERINE IN ESCHERICHIA COLI AND SALMONELLA TYPHIMURIUM. J Bacteriol. 1963 Jun;85:1431–1439. doi: 10.1128/jb.85.6.1431-1439.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]