Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1972 Jun;110(3):945–954. doi: 10.1128/jb.110.3.945-954.1972

Arginine Control of Transcription of argECBH Messenger Ribonucleic Acid in Escherichia coli

Richard Krzyzek 1, Palmer Rogers 1
PMCID: PMC247514  PMID: 4555419

Abstract

The level of messenger ribonucleic acid specific for the argECBH gene cluster (arg-mRNA) of Escherichia coli was measured by deoxyribonucleic acid-ribonucleic acid hybridization in a number of strains. During the first 10 min after removal of arginine (derepression), the rate of arg-mRNA accumulation was six to ten times greater than that found in arginine-repressed argR+ cells. In the absence of arginine, l-canavanine (200 μg/ml) repressed arg-mRNA synthesis to a level only 20 to 30% lower than that found after arginine deprivation. High levels of arg-mRNA were produced by argR strains with or without added arginine. Within about 2 min after arginine addition to argR+ cells, the rate of synthesis of arg-mRNA reached the repressed level. Likewise, 2.5 min after rifampin addition, all transcription of arg-mRNA was completed. These data are consistent with the view that arginine signals repression by inhibiting the initiation of transcription of arg-mRNA mediated in some way by the argR gene. The kinetics of arg-mRNA accumulation and the kinetics of completion of transcription together with the profile of hybridizable arg-mRNA in sucrose density gradients (major component 16S) suggest that the argECBH gene cluster is transcribed in short pieces rather than as a single unit.

Full text

PDF
946

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Coyne B. J. Depression kinetics of ornithine transcarbamylase in Escherichia coli. Biophys J. 1970 Oct;10(10):911–936. doi: 10.1016/s0006-3495(70)86343-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cunin R., Elseviers D., Sand G., Freundlich G., Glandsdorff N. On the functional organization of the arg ECBH cluster of genes in Escherichia coli K-12. Mol Gen Genet. 1969;106(1):32–47. doi: 10.1007/BF00332819. [DOI] [PubMed] [Google Scholar]
  3. Cunin Raymond, Glansdorff Nicolas. Messenger RNA from arginine and phosphoenolpyruvate carboxylase genes in arg R+ and arg R(-) strains of E. coli K-12. FEBS Lett. 1971 Oct 15;18(1):135–137. doi: 10.1016/0014-5793(71)80428-3. [DOI] [PubMed] [Google Scholar]
  4. DAVIS B. D., MINGIOLI E. S. Mutants of Escherichia coli requiring methionine or vitamin B12. J Bacteriol. 1950 Jul;60(1):17–28. doi: 10.1128/jb.60.1.17-28.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Faanes R., Rogers P. Roles of arginine and canavanine in the synthesis and repression of ornithine transcarbamylase by Escherichia coli. J Bacteriol. 1968 Aug;96(2):409–420. doi: 10.1128/jb.96.2.409-420.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. GLANSDORFF N. TOPOGRAPHY OF COTRANSDUCIBLE ARGININE MUTATIONS IN ESCHERICHIA COLI K-12. Genetics. 1965 Feb;51:167–179. doi: 10.1093/genetics/51.2.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. GORINI L., GUNDERSEN W., BURGER M. Genetics of regulation of enzyme synthesis in the arginine biosynthetic pathway of Escherichia coli. Cold Spring Harb Symp Quant Biol. 1961;26:173–182. doi: 10.1101/sqb.1961.026.01.022. [DOI] [PubMed] [Google Scholar]
  8. Gillespie D., Spiegelman S. A quantitative assay for DNA-RNA hybrids with DNA immobilized on a membrane. J Mol Biol. 1965 Jul;12(3):829–842. doi: 10.1016/s0022-2836(65)80331-x. [DOI] [PubMed] [Google Scholar]
  9. Hirvonen A. P., Vogel H. J. Response of argR- spheroplasts of Escherichia coli to extracted arginine repressor. Biochem Biophys Res Commun. 1970 Dec 24;41(6):1611–1616. doi: 10.1016/0006-291x(70)90573-5. [DOI] [PubMed] [Google Scholar]
  10. Imamoto F., Morikawa N., Sato K., Mishima S., Nishimura T. On the transcription of the tryptophan operon in Escherichia coli. II. Production of the specific messenger RNA. J Mol Biol. 1965 Aug;13(1):157–168. doi: 10.1016/s0022-2836(65)80086-9. [DOI] [PubMed] [Google Scholar]
  11. Imamoto F., Morikawa N., Sato K. On the transcription of the tryptophan operon in Escherichia coli. 3. Multicistronic messenger RNA and polarity for transcription. J Mol Biol. 1965 Aug;13(1):169–182. doi: 10.1016/s0022-2836(65)80087-0. [DOI] [PubMed] [Google Scholar]
  12. Imamoto F., Yanofsky C. Transcription of the tryptophan operon in polarity mutants of Escherichia coli. II. Evidence for normal production of tryp-mRNA molecules and for premature termination of transcription. J Mol Biol. 1967 Aug 28;28(1):25–35. doi: 10.1016/s0022-2836(67)80074-3. [DOI] [PubMed] [Google Scholar]
  13. Jacoby G. A., Gorini L. A unitary account of the repression mechanism of arginine biosynthesis in Escherichia coli. I. The genetic evidence. J Mol Biol. 1969 Jan 14;39(1):73–87. doi: 10.1016/0022-2836(69)90334-9. [DOI] [PubMed] [Google Scholar]
  14. KAISER A. D., HOGNESS D. S. The transformation of Escherichia coli with deoxyribonucleic acid isolated from bacteriophage lambda-dg. J Mol Biol. 1960 Dec;2:392–415. doi: 10.1016/s0022-2836(60)80050-2. [DOI] [PubMed] [Google Scholar]
  15. Karlström O., Gorini L. A unitary account of the repression mechanism of arginine biosynthesis in Escherichia coli. II. Application to the physiological evidence. J Mol Biol. 1969 Jan 14;39(1):89–94. doi: 10.1016/0022-2836(69)90335-0. [DOI] [PubMed] [Google Scholar]
  16. LEIVE L. ACTINOMYCIN SENSITIVITY IN ESCHERICHIA COLI PRODUCED BY EDTA. Biochem Biophys Res Commun. 1965 Jan 4;18:13–17. doi: 10.1016/0006-291x(65)90874-0. [DOI] [PubMed] [Google Scholar]
  17. LUBIN M. Enrichment of auxotrophic mutant populations by recycling. J Bacteriol. 1962 Mar;83:696–697. doi: 10.1128/jb.83.3.696-697.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lavallé R., De Hauwer G. Messenger RNA synthesis during amino acid starvation in Escherichia coli. J Mol Biol. 1968 Oct 28;37(2):269–288. doi: 10.1016/0022-2836(68)90267-2. [DOI] [PubMed] [Google Scholar]
  19. Lavallé R. Regulation at the level of translation in the arginine pathway of Escherichia coli K12. J Mol Biol. 1970 Jul 28;51(2):449–451. doi: 10.1016/0022-2836(70)90154-3. [DOI] [PubMed] [Google Scholar]
  20. Lazzarini R. A., Dahlberg A. E. The control of ribonucleic acid synthesis during amino acid deprivation in Escherichia coli. J Biol Chem. 1971 Jan 25;246(2):420–429. [PubMed] [Google Scholar]
  21. MAAS W. K., MAAS R., WIAME J. M., GLANSDORFF N. STUDIES ON THE MECHANISM OF REPRESSION OF ARGININE BIOSYNTHESIS IN ESCHERICHIA COLI. I. DOMINANCE OF REPRESSIBILITY IN ZYGOTES. J Mol Biol. 1964 Mar;8:359–364. doi: 10.1016/s0022-2836(64)80199-6. [DOI] [PubMed] [Google Scholar]
  22. MAAS W. K. STUDIES ON THE MECHANISM OF REPRESSION OF ARGININE BIOSYNTHESIS IN ESCHERICHIA COLI. II. DOMINANCE OF REPRESSIBILITY IN DIPLOIDS. J Mol Biol. 1964 Mar;8:365–370. doi: 10.1016/s0022-2836(64)80200-x. [DOI] [PubMed] [Google Scholar]
  23. MAAS W. K. Studies on repression of arginine biosynthesis in Escherichia coli. Cold Spring Harb Symp Quant Biol. 1961;26:183–191. doi: 10.1101/sqb.1961.026.01.023. [DOI] [PubMed] [Google Scholar]
  24. McLellan W. L., Vogel H. J. Translational repression in the arginine system of Escherichia coli. Proc Natl Acad Sci U S A. 1970 Dec;67(4):1703–1709. doi: 10.1073/pnas.67.4.1703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Miller Z., Varmus H. E., Parks J. S., Perlman R. L., Pastan I. Regulation of gal messenger ribonucleic acid synthesis in Escherichia coli by 3',5'-cyclic adenosine monophosphate. J Biol Chem. 1971 May 10;246(9):2898–2903. [PubMed] [Google Scholar]
  26. Mosteller R. D., Yanofsky C. Transcription of the tryptophan operon in Escherichia coli: rifampicin as an inhibitor of initiation. J Mol Biol. 1970 Mar;48(3):525–531. doi: 10.1016/0022-2836(70)90064-1. [DOI] [PubMed] [Google Scholar]
  27. Nierlich D. P. Amino acid control over RNA synthesis: a re-evaluation. Proc Natl Acad Sci U S A. 1968 Aug;60(4):1345–1352. doi: 10.1073/pnas.60.4.1345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. OKAMOTO K., SUGINO Y., NOMURA M. Synthesis and turnover of phage messenger RNA in E. coli infected with bacteriophage T4 in the presence of chloromycetin. J Mol Biol. 1962 Nov;5:527–534. doi: 10.1016/s0022-2836(62)80126-0. [DOI] [PubMed] [Google Scholar]
  29. Prescott L. M., Jones M. E. Modified methods for the determination of carbamyl aspartate. Anal Biochem. 1969 Dec;32(3):408–419. doi: 10.1016/s0003-2697(69)80008-4. [DOI] [PubMed] [Google Scholar]
  30. Press R., Glansdorff N., Miner P., De Vries J., Kadner R., Maas W. K. Isolation of transducing particles of phi-80 bacteriophage that carry different regions of the Escherichia coli genome. Proc Natl Acad Sci U S A. 1971 Apr;68(4):795–798. doi: 10.1073/pnas.68.4.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. ROGERS P., NOVELLI G. D. Formation of ornithine transcarbamylase in cells and protoplasts of Escherichia coli. Biochim Biophys Acta. 1959 Jun;33(2):423–436. doi: 10.1016/0006-3002(59)90132-5. [DOI] [PubMed] [Google Scholar]
  32. Rogers P., Krzyzek R., Kaden T. M., Arfman E. Effect of arginine and canavanine on arginine messenger RNA synthesis. Biochem Biophys Res Commun. 1971 Sep;44(5):1220–1226. doi: 10.1016/s0006-291x(71)80216-4. [DOI] [PubMed] [Google Scholar]
  33. Stubbs J. D., Hall B. D. Level of tryptophan messenger RNA in Escherichia coli. J Mol Biol. 1968 Oct 28;37(2):289–302. doi: 10.1016/0022-2836(68)90268-4. [DOI] [PubMed] [Google Scholar]
  34. Udaka S. Isolation of the arginine repressor in Escherichia coli. Nature. 1970 Oct 24;228(5269):336–338. doi: 10.1038/228336a0. [DOI] [PubMed] [Google Scholar]
  35. Wehrli W., Staehelin M. Actions of the rifamycins. Bacteriol Rev. 1971 Sep;35(3):290–309. doi: 10.1128/br.35.3.290-309.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wilcox G., Singer J., Heffernan L. Deoxyribonucleic acid-ribonucleic acid hybridization studies on the L-Arabinose operon of Escherichia coli B-r. J Bacteriol. 1971 Oct;108(1):1–4. doi: 10.1128/jb.108.1.1-4.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES