Abstract
Livers of uninfected guinea pigs and of guinea pigs infected with Coxiella burneti were fractionated into smooth endoplasmic reticulum, rough endoplasmic reticulum (RER), pellet, and cell sap fractions. The ribonucleic acid (RNA) and protein of each fraction were determined, and the phosphorylase, glucose-6-phosphatase, and glucosyl transferase (glycogen synthetase) activities of each fraction were measured. Decreased RNA, protein, and enzyme activities were found in the RER and pellet fractions of infected livers, with the greatest differences in the RER. The evidence indicates a solubilization of the phosphorylase and synthetase, with the enzymes moving from the RER and glycogen-containing pellet fraction to the cell sap. The data suggest the RER as a target during Q fever.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barber A. A., Orrell S. A., Jr, Bueding E. Association of enzymes with rat liver glycogen isolated by rate-zonal centrifugation. J Biol Chem. 1967 Sep 25;242(18):4040–4044. [PubMed] [Google Scholar]
- Coimbra A., Leblond C. P. Sites of glycogen synthesis in rat liver cells as shown by electron microscope radioautography after administration of glucose-H3. J Cell Biol. 1966 Jul;30(1):151–175. doi: 10.1083/jcb.30.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dallner G., Siekevitz P., Palade G. E. Biogenesis of endoplasmic reticulum membranes. II. Synthesis of constitutive microsomal enzymes in developing rat hepatocyte. J Cell Biol. 1966 Jul;30(1):97–117. doi: 10.1083/jcb.30.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HALLINAN T., MUNRO H. N. A RAPID METHOD FOR PREPARING GRANULAR AND AGRANULAR ENDOPLASMIC RETICULUM AND FREE RIBOSOMES FROM RAT LIVER. Q J Exp Physiol Cogn Med Sci. 1965 Jan;50:93–103. doi: 10.1113/expphysiol.1965.sp001774. [DOI] [PubMed] [Google Scholar]
- HIZUKURI S., LARNER J. STUDIES ON UDPG: ALPHA-1,4-GLUCAN ALPHA-4-GLUCOSYLTRANSFERASE. VII. CONVERSION OF THE ENZYME FROM GLUCOSE-6-PHOSPHATE-DEPENDENT TO INDEPENDENT FORM IN LIVER. Biochemistry. 1964 Nov;3:1783–1788. doi: 10.1021/bi00899a034. [DOI] [PubMed] [Google Scholar]
- Jamieson J. D., Palade G. E. Intracellular transport of secretory proteins in the pancreatic exocrine cell. I. Role of the peripheral elements of the Golgi complex. J Cell Biol. 1967 Aug;34(2):577–596. doi: 10.1083/jcb.34.2.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jamieson J. D., Palade G. E. Role of the Golgi complex in the intracellular transport of secretory proteins. Proc Natl Acad Sci U S A. 1966 Feb;55(2):424–431. doi: 10.1073/pnas.55.2.424. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klein F., Walker J. S., Fitzpatrick D. F., Lincoln R. E., Mahlandt B. G., Jones W. I., Jr, Dobbs J. P., Hendrix K. J. Pathophysiology of anthrax. J Infect Dis. 1966 Apr;116(2):123–138. doi: 10.1093/infdis/116.2.123. [DOI] [PubMed] [Google Scholar]
- LINDELL S. S., SMITH I. M., NELSON J. W., DELLE M., ROUTH J. I. LOCUS OF BIOCHEMICAL CHANGE IN MICE DYING FROM STAPHYLOCOCCAL INFECTION. Nature. 1964 Jan 11;201:185–187. doi: 10.1038/201185b0. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- LUCK D. J. Glycogen synthesis from uridine diphosphate glucose. The distribution of the enzyme in liver cell fractions. J Biophys Biochem Cytol. 1961 Jun;10:195–209. doi: 10.1083/jcb.10.2.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MERCADO T. I., VON BRAND T. Glycogen studies on white rats infected with Plasmodium berghei. Exp Parasitol. 1954 May;3(3):259–266. doi: 10.1016/0014-4894(54)90025-9. [DOI] [PubMed] [Google Scholar]
- Mercado T. I., Von Brand T. Histochemical localization of glycogen-synthesizing enzymes during parasitic infections. Exp Parasitol. 1967 Dec;21(3):325–335. doi: 10.1016/0014-4894(67)90092-6. [DOI] [PubMed] [Google Scholar]
- Mersmann H. J., Segal H. L. An on-off mechanism for liver glycogen synthetase activity. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1688–1695. doi: 10.1073/pnas.58.4.1688. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mersmann H. J., Segal H. L. Glucocorticoid control of the liver glycogen synthetase-activating system. J Biol Chem. 1969 Apr 10;244(7):1701–1704. [PubMed] [Google Scholar]
- Munro H. N., Fleck A. Recent developments in the measurement of nucleic acids in biological materials. A supplementary review. Analyst. 1966 Feb;91(79):78–88. doi: 10.1039/an9669100078. [DOI] [PubMed] [Google Scholar]
- NIGAM V. N. Regulatory mechanisms of glycogen deposition in liver of normal and tumour-bearing rat, and in Novikoff ascites hepatoma. Nature. 1962 Nov 3;196:478–480. doi: 10.1038/196478a0. [DOI] [PubMed] [Google Scholar]
- PARETSKY D., DOWNS C. M., SALMON C. W. SOME BIOCHEMICAL CHANGES IN THE GUINEA PIG DURING INFECTION WITH COXIELLA BURNETII. J Bacteriol. 1964 Jul;88:137–142. doi: 10.1128/jb.88.1.137-142.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SIE H. G., HABLANIAN A., FISHMAN W. H. SOLUBILIZATION OF MOUSE LIVER GLYCOGEN SYNTHETASE AND PHOSPHORYLASE DURING STARVATION GLYCOGENOLYSIS AND ITS REVERSAL BY CORTISOL. Nature. 1964 Jan 25;201:393–394. doi: 10.1038/201393a0. [DOI] [PubMed] [Google Scholar]
- SINGH V. N., BHARGAVA U., VENKITASUBRAMANIAN T. A., VISWANATHAN R. Study of glycogen synthesizing and degrading enzymes of guinea pig liver in experimental tuberculosis. Arch Biochem Biophys. 1963 May;101:234–238. doi: 10.1016/s0003-9861(63)80008-9. [DOI] [PubMed] [Google Scholar]
- Sie H. G., Hablanian A. Depletion of glycogen synthetase and increase of glucose 6-phosphate dehydrogenase in livers of ethionine-treated mice. Biochem J. 1965 Oct;97(1):32–36. doi: 10.1042/bj0970032. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siekevitz P., Palade G. E. Distribution of newly synthesized amylase in microsomal subfractions of guinea pigs pancreas. J Cell Biol. 1966 Sep;30(3):519–530. doi: 10.1083/jcb.30.3.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TRAUT R. R., LIPMANN F. Activation of glycogen synthetase by glucose 6-phosphate. J Biol Chem. 1963 Apr;238:1213–1221. [PubMed] [Google Scholar]
- Tata J. R. Subcellular redistribution of a liver alpha-glucan phosphorylase during alterations in glycogen content. Biochem J. 1964 Feb;90(2):284–292. doi: 10.1042/bj0900284. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsung P. K., Paretsky D. Biochemical and ultrastructural changes in liver endoplasmic reticular fractions during Q-fever. Acta Virol. 1968 Jan;12(1):49–53. [PubMed] [Google Scholar]
- VON BRAND T., MERCADO T. I. Quantitative and histochemical studies on glycogenesis in the liver of rats infected with plasmodium berghei. Exp Parasitol. 1956 Jan;5(1):34–47. doi: 10.1016/0014-4894(56)90004-2. [DOI] [PubMed] [Google Scholar]
- Wilder M. S., Sword C. P. Mechanisms of pathogenesis in Listeria monocytogenes infection. 3. Carbohydrate metabolism. J Bacteriol. 1967 Feb;93(2):538–543. doi: 10.1128/jb.93.2.538-543.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]