Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1970 Jun;102(3):767–773. doi: 10.1128/jb.102.3.767-773.1970

Biosynthesis of 4-Aminobenzoate in Escherichia coli

Minta Huang 1, F Gibson 1
PMCID: PMC247625  PMID: 4914080

Abstract

Two different mutations (pabA and pabB) affecting 4-aminobenzoate biosynthesis were obtained in strains of Escherichia coli lacking chorismate mutase and anthranilate synthetase activity, thus allowing study of the pathway of biosynthesis of 4-aminobenzoate by use of cell extracts of strains carrying the pab mutations. Two components with approximate molecular weights of 9,000 (component A) and 48,000 (component B) are concerned in the biosynthesis of 4-aminobenzoate from chorismate by E. coli. No diffusible intermediate compound could be detected.

Full text

PDF
771

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altendorf K. H., Bacher A., Lingens F. An intermediate involved in the formation of 4-aminobenzoic acid from chorismic acid in aerobacter aerogenes. FEBS Lett. 1969 Jun;3(5):319–321. doi: 10.1016/0014-5793(69)80167-5. [DOI] [PubMed] [Google Scholar]
  2. Andrews P. The gel-filtration behaviour of proteins related to their molecular weights over a wide range. Biochem J. 1965 Sep;96(3):595–606. doi: 10.1042/bj0960595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beadle G. W., Tatum E. L. Genetic Control of Biochemical Reactions in Neurospora. Proc Natl Acad Sci U S A. 1941 Nov 15;27(11):499–506. doi: 10.1073/pnas.27.11.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. COTTON R. G., GIBSON F. THE BIOSYNTHESIS OF PHENYLALANINE AND TYROSINE; ENZYMES CONVERTING CHORISMIC ACID INTO PREPHENIC ACID AND THEIR RELATIONSHIPS TO PREPHENATE DEHYDRATASE AND PREPHENATE DEHYDROGENASE. Biochim Biophys Acta. 1965 Apr 12;100:76–88. doi: 10.1016/0304-4165(65)90429-0. [DOI] [PubMed] [Google Scholar]
  5. Dempsey W. B., Pachler P. F. Isolation and characterization of pyridoxine auxotrophs of Escherichia coli. J Bacteriol. 1966 Feb;91(2):642–645. doi: 10.1128/jb.91.2.642-645.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. GIBSON F., GIBSON M., COX G. B. THE BIOSYNTHESIS OF P-AMINOBENZOIC ACID FROM CHORISMIC ACID. Biochim Biophys Acta. 1964 Mar 16;82:637–638. doi: 10.1016/0304-4165(64)90465-9. [DOI] [PubMed] [Google Scholar]
  7. Gibson F., Pittard J. Pathways of biosynthesis of aromatic amino acids and vitamins and their control in microorganisms. Bacteriol Rev. 1968 Dec;32(4 Pt 2):465–492. [PMC free article] [PubMed] [Google Scholar]
  8. Gibson M. I., Gibson F. Preliminary studies on the isolation and metabolism of an intermediate in aromatic biosynthesis: chorismic acid. Biochem J. 1964 Feb;90(2):248–256. doi: 10.1042/bj0900248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hendler S., Srinivasan P. R. An intermediate in the conversion of chorismate to p-aminobenzoate. Biochim Biophys Acta. 1967 Aug 29;141(3):656–658. doi: 10.1016/0304-4165(67)90200-0. [DOI] [PubMed] [Google Scholar]
  10. Huang M., Pittard J. Genetic analysis of mutant strains of Escherichia coli requiring p-aminobenzoic acid for growth. J Bacteriol. 1967 Jun;93(6):1938–1942. doi: 10.1128/jb.93.6.1938-1942.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. LURIA S. E., BURROUS J. W. Hybridization between Escherichia coli and Shigella. J Bacteriol. 1957 Oct;74(4):461–476. doi: 10.1128/jb.74.4.461-476.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. MONOD J., COHEN-BAZIRE G., COHN M. Sur la biosynthèse de la beta-galactosidase (lactase) chez Escherichia coli; la spécificité de l'induction. Biochim Biophys Acta. 1951 Nov;7(4):585–599. doi: 10.1016/0006-3002(51)90072-8. [DOI] [PubMed] [Google Scholar]
  14. PITTARD J. EFFECT OF INTEGRATED SEX FACTOR ON TRANSDUCTION OF CHROMOSOMAL GENES IN ESCHERICHIA COLI. J Bacteriol. 1965 Mar;89:680–686. doi: 10.1128/jb.89.3.680-686.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pittard J., Wallace B. J. Distribution and function of genes concerned with aromatic biosynthesis in Escherichia coli. J Bacteriol. 1966 Apr;91(4):1494–1508. doi: 10.1128/jb.91.4.1494-1508.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. SRINIVASAN P. R., WEISS B. The biosynthesis of p-aminobenzoic acid: studies on the origin of the amino group. Biochim Biophys Acta. 1961 Aug 19;51:597–599. doi: 10.1016/0006-3002(61)90623-0. [DOI] [PubMed] [Google Scholar]
  17. TAYLOR A. L., THOMAN M. S. THE GENETIC MAP OF ESCHERICHIA COLI K-12. Genetics. 1964 Oct;50:659–677. doi: 10.1093/genetics/50.4.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tatum E. L., Beadle G. W. Genetic Control of Biochemical Reactions in Neurospora: An "Aminobenzoicless" Mutant. Proc Natl Acad Sci U S A. 1942 Jun;28(6):234–243. doi: 10.1073/pnas.28.6.234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Taylor A. L., Trotter C. D. Revised linkage map of Escherichia coli. Bacteriol Rev. 1967 Dec;31(4):332–353. doi: 10.1128/br.31.4.332-353.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Weiss B., Srinivasan P. R. THE BIOSYNTHESIS OF p-AMINOBENZOIC ACID. Proc Natl Acad Sci U S A. 1959 Oct;45(10):1491–1494. doi: 10.1073/pnas.45.10.1491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. White P. J., Woods D. D. The synthesis of p-aminobenzoic acid and folic acid by staphylococci sensitive and resistant to sulphonamides. J Gen Microbiol. 1965 Aug;40(2):243–253. doi: 10.1099/00221287-40-2-243. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES