Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1970 Aug;103(2):323–328. doi: 10.1128/jb.103.2.323-328.1970

Termination of Deoxyribonucleic Acid in Escherichia coli by 2′,3′-Dideoxyadenosine1

Lorraine Toji a,2, Seymour S Cohen a
PMCID: PMC248082  PMID: 4914563

Abstract

2′,3′-Dideoxyadenosine was previously shown to be lethal to Escherichia coli and to inhibit deoxyribonucleic acid (DNA) synthesis irreversibly in this organism. It was also shown that triphosphate of this analogue terminates DNA chains in an in vitro system. Data presented here show that the nucleoside is relatively insensitive to E. coli adenosine deaminase and is converted intracellularly into the dideoxynucleotide, including the triphosphate. Thymine nucleotide pools were not reduced in inhibited bacteria, nor did preformed DNA break down. Some adenine was liberated from the dideoxyadenosine on incubation, and the latter was incorporated into ribonucleic acid. Nevertheless, about 4,000 molecules of the dideoxynucleoside were incorporated into DNA per cell. The dideoxynucleotide occurred in DNA chains in a terminal position, liberated selectively by venom phosphodiesterase. The possible nature of the lethal event is discussed.

Full text

PDF
328

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkinson M. R., Deutscher M. P., Kornberg A., Russell A. F., Moffatt J. G. Enzymatic synthesis of deoxyribonucleic acid. XXXIV. Termination of chain growth by a 2',3'-dideoxyribonucleotide. Biochemistry. 1969 Dec;8(12):4897–4904. doi: 10.1021/bi00840a037. [DOI] [PubMed] [Google Scholar]
  2. Carpenter C., Binkley S. B. Effect of p-fluorophenylalanine on chromosome replication in Escherichia coli. J Bacteriol. 1968 Oct;96(4):939–949. doi: 10.1128/jb.96.4.939-949.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Doering A. M., Jansen M., Cohen S. S. Polymer synthesis in killed bacteria: lethality of 2',3'-dideoxyadenosine. J Bacteriol. 1966 Sep;92(3):565–574. doi: 10.1128/jb.92.3.565-574.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. KANAZIR D., BARNER H. D., FLAKS J. G., COHEN S. S. Some physiological and genetic properties of a strain of Escherichia coli requiring thymine, arginine and uracil. Biochim Biophys Acta. 1959 Aug;34:341–353. doi: 10.1016/0006-3002(59)90287-2. [DOI] [PubMed] [Google Scholar]
  5. KOCH A. L., VALLEE G. The properties of adenosine deaminase and adenosine nucleoside phosphorylase in extracts of Escherichia coli. J Biol Chem. 1959 May;234(5):1213–1218. [PubMed] [Google Scholar]
  6. McCarthy J. R., Jr, Robins M. J., Townsend L. B., Robins R. K. Purine nucleosides. XIV. Unsaturated furanosyl adenine nucleosides prepared via base-catalyzed elimination reactions of 2'-deoxyadenosine derivatives. J Am Chem Soc. 1966 Apr 5;88(7):1549–1553. doi: 10.1021/ja00959a043. [DOI] [PubMed] [Google Scholar]
  7. Neuhard J., Munch-Petersen A. Studies on the acid-soluble nucleotide pool in thymine-requiring mutants of Escherichia coli during thymine starvation. II. Changes in the amounts of deoxycytidine triphosphate and deoxyadenosine triphosphate in Escherichia coli 15 T-A-U. Biochim Biophys Acta. 1966 Jan 18;114(1):61–71. doi: 10.1016/0005-2787(66)90253-x. [DOI] [PubMed] [Google Scholar]
  8. Oishi M. Studies of DNA replication in vivo, II. Evidence for the second intermediate. Proc Natl Acad Sci U S A. 1968 Jun;60(2):691–698. doi: 10.1073/pnas.60.2.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Oishi M. Studies of DNA replication in vivo. 3. Accumulation of a single-stranded isolation product of DNA replication by conditional mutant strains of T4. Proc Natl Acad Sci U S A. 1968 Jul;60(3):1000–1006. doi: 10.1073/pnas.60.3.1000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Oishi M. Studies of DNA replication in vivo. I. Isolation of the first intermediate of DNA replication in bacteria as single-stranded DNA. Proc Natl Acad Sci U S A. 1968 May;60(1):329–336. doi: 10.1073/pnas.60.1.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Okazaki R., Okazaki T., Sakabe K., Sugimoto K., Sugino A. Mechanism of DNA chain growth. I. Possible discontinuity and unusual secondary structure of newly synthesized chains. Proc Natl Acad Sci U S A. 1968 Feb;59(2):598–605. doi: 10.1073/pnas.59.2.598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Robins M. J., McCarthy J. R., Jr, Robins R. K. Purine nucleosides. XII. The preparation of 2',3'-dideoxyadenosine, 2',5'-dideoxyadenosine, and 2',3',5'-trideoxyadenosine from 2'-deoxyadenosine. Biochemistry. 1966 Jan;5(1):224–231. doi: 10.1021/bi00865a029. [DOI] [PubMed] [Google Scholar]
  13. Russell A. F., Moffatt J. G. Synthesis of some nucleotides derived from 3'-deoxythymidine. Biochemistry. 1969 Dec;8(12):4889–4896. doi: 10.1021/bi00840a036. [DOI] [PubMed] [Google Scholar]
  14. STERN J. L., SEKIGUCHI M., BARNER H. D., COHEN S. S. THE SYNTHESIS OF MESSENGER RNA WITHOUT PROTEIN SYNTHESIS. I. STUDIES WITH THYMINELESS STRAINS OF ESCHERICHIA COLI. J Mol Biol. 1964 May;8:629–637. doi: 10.1016/s0022-2836(64)80113-3. [DOI] [PubMed] [Google Scholar]
  15. Toji L., Cohen S. S. The enzymatic termination of polydeoxynucleotides by 2',3'-dideoxyadenosine triphosphate. Proc Natl Acad Sci U S A. 1969 Jul;63(3):871–877. doi: 10.1073/pnas.63.3.871. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES