Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1970 Sep;103(3):541–546. doi: 10.1128/jb.103.3.541-546.1970

Roles of Acetate and Pyruvate in the Metabolism of Streptococcus diacetilactis

E B Collins 1, J C Bruhn 1
PMCID: PMC248124  PMID: 4919981

Abstract

Streptococcus diacetilactis required acetate, contained acetate kinase and phosphotransacetylase, and incorporated both radioactive exogenous acetate and acetate from citrate into cell lipids. dl-α-Lipoic acid replaced acetate and was required for the oxidation of pyruvate. Stimulation of S. diacetilactis by citrate was found to depend on pyruvate oxidation. Resting cells of the organism produced acetate from 73% of the pyruvate they utilized. However, molar growth yields from glucose were not greater under aerobic compared to anaerobic conditions or when lipoic acid or citrate plus lipoic acid was used in the medium in place of acetate. Data indicate that the growth of S. diacetilactis is limited by the rate of acetyl-coenzyme A synthesis, that the rate of synthesis from pyruvate is higher than the rate from acetate, and that lack of acetyl-coenzyme A not required for growth limits the production of diacetyl and precludes the formation of adenosine triphosphate from acetyl-coenzyme A.

Full text

PDF
543

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRODOVSKY E. R., UTLEY M. H., PEARSON W. N. Methionine inadequacy of casein hydrolyzate as source of difficulty in vitamin assays. Science. 1958 Aug 8;128(3319):307–308. doi: 10.1126/science.128.3319.307. [DOI] [PubMed] [Google Scholar]
  2. Brown M. S., Akagi J. M. Purification of acetokinase from Desulfovibrio desulfuricans. J Bacteriol. 1966 Oct;92(4):1273–1274. doi: 10.1128/jb.92.4.1273-1274.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CHANTRENNE H., LIPMANN F. Coenzyme A dependence and acetyl donor function of the pyruvate-formate exchange system. J Biol Chem. 1950 Dec;187(2):757–767. [PubMed] [Google Scholar]
  4. COLLINS E. B., NELSON F. E., PARMELEE C. E. Acetate and oleate requirements of the lactic group of streptococci. J Bacteriol. 1950 Jan;59(1):69–74. doi: 10.1128/jb.59.1.69-74.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chuang L. F., Collins E. B. Biosynthesis of diacetyl in bacteria and yeast. J Bacteriol. 1968 Jun;95(6):2083–2089. doi: 10.1128/jb.95.6.2083-2089.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DAS M. L., KOIKE M., REED L. J. On the role of thiamine pyrophosphate in oxidative decarboxylation of alpha-keto acids. Proc Natl Acad Sci U S A. 1961 Jun 15;47:753–759. doi: 10.1073/pnas.47.6.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DEIBEL R. H., NIVEN C. F., Jr PYRUVATE FERMENTATION BY STREPTOCOCCUS FAECALIS. J Bacteriol. 1964 Jul;88:4–10. doi: 10.1128/jb.88.1.4-10.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. ECKER R. E., LOCKHART W. R. Specific effect of limiting nutrient on physiological events during culture growth. J Bacteriol. 1961 Oct;82:511–516. doi: 10.1128/jb.82.4.511-516.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. GUNSALUS I. C., DOLIN M. I., STRUGLIA L. Pyruvic acid metabolism. III. A manometric assay for pyruvate oxidation factor. J Biol Chem. 1952 Feb;194(2):849–857. [PubMed] [Google Scholar]
  10. GUNSALUS I. C. Oxidative and transfer reactions of lipoic acid. Fed Proc. 1954 Sep;13(3):715–722. [PubMed] [Google Scholar]
  11. HARVEY R. J., COLLINS E. B. ROLES OF CITRATE AND ACETOIN IN THE METABOLISM OF STREPTOCOCCUS DIACETILACTIS. J Bacteriol. 1963 Dec;86:1301–1307. doi: 10.1128/jb.86.6.1301-1307.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. HARVEY R. J., COLLINS E. B. Role of citritase in acetoin formation by Streptococcus diacetilactis and Leuconostoc citrovorum. J Bacteriol. 1961 Dec;82:954–959. doi: 10.1128/jb.82.6.954-959.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. JONES M. E., BLACK S., FLYNN R. M., LIPMANN F. Acetyl coenzyme a synthesis through pyrophosphoryl split of adenosine triphosphate. Biochim Biophys Acta. 1953 Sep-Oct;12(1-2):141–149. doi: 10.1016/0006-3002(53)90133-4. [DOI] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. LYTLE V. L., O'KANE D. J. The pyruvate oxidation factor requirement of Streptococcus cremoris. J Bacteriol. 1951 Feb;61(2):240–241. doi: 10.1128/jb.61.2.240-241.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Moustafa H. H., Collins E. B. Molar growth yield of Streptococcus faecalis on pyruvate. J Bacteriol. 1969 Mar;97(3):1496–1497. doi: 10.1128/jb.97.3.1496-1497.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Moustafa H. H., Collins E. B. Molar growth yields of certain lactic acid bacteria as influenced by autolysis. J Bacteriol. 1968 Jul;96(1):117–125. doi: 10.1128/jb.96.1.117-125.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Niven C. F. Nutrition of Streptococcus lactis. J Bacteriol. 1944 Apr;47(4):343–350. doi: 10.1128/jb.47.4.343-350.1944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. O'KANE D. J. Influence of the pyruvate oxidation factor on the oxidative metabolism of glucose by Streptococcus faecalis. J Bacteriol. 1950 Oct;60(4):449–458. doi: 10.1128/jb.60.4.449-458.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. O'kane D. J., Gunsalus I. C. Pyruvic Acid Metabolism: A Factor Required for Oxidation by Streptococcus faecalis. J Bacteriol. 1948 Oct;56(4):499–506. doi: 10.1128/jb.56.4.499-506.1948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. REED L. J., DeBUSK B. G., JOHNSTON P. M., GETZENDANER M. E. Acetate-replacing factors for lactic acid bacteria. I. Nature, extraction, and distribution. J Biol Chem. 1951 Oct;192(2):851–858. [PubMed] [Google Scholar]
  22. REISS O. K. Pyruvate metabolism. II. Restoration of pyruvate utilization in heart sarcosomes by alpha-(+)-lipoic acid. J Biol Chem. 1958 Oct;233(4):789–793. [PubMed] [Google Scholar]
  23. ROSE I. A., GRUNBERG-MANAGO M., KOREY S. R., OCHOA S. Enzymatic phosphorylation of acetate. J Biol Chem. 1954 Dec;211(2):737–756. [PubMed] [Google Scholar]
  24. SAGERS R. D., BENZIMAN M., GUNSALUS I. C. Acetate formation in Clostridium acidi-urici: acetokinase. J Bacteriol. 1961 Aug;82:233–238. doi: 10.1002/path.1700820136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. SHOCKMAN G. D. The acetate requirement of Streptococcus faecalis. J Bacteriol. 1956 Jul;72(1):101–104. doi: 10.1128/jb.72.1.101-104.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. STADTMAN E. R., BARKER H. A. Fatty acid synthesis by enzyme preparations of Clostridium kluyveri. VI. Reactions of acyl phosphates. J Biol Chem. 1950 Jun;184(2):769–793. [PubMed] [Google Scholar]
  27. Speckman R. A., Collins E. B. Diacetyl biosynthesis in Streptococcus diacetilactis and Leuconostoc citrovorum. J Bacteriol. 1968 Jan;95(1):174–180. doi: 10.1128/jb.95.1.174-180.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. THORNE K. J., KODICEK E. The metabolism of acetate and mevalonic acid by lactobacilli. I. The effect of acetate and mevalonic acid on growth. Biochim Biophys Acta. 1962 May 21;59:273–279. doi: 10.1016/0006-3002(62)90175-0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES