Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1991 Sep;65(9):4720–4727. doi: 10.1128/jvi.65.9.4720-4727.1991

Rotavirus protein rearrangements in purified membrane-enveloped intermediate particles.

M S Poruchynsky 1, P H Atkinson 1
PMCID: PMC248928  PMID: 1651404

Abstract

Rotavirus, a double-shelled nonenveloped member of the REoviridae family, becomes transiently membrane enveloped during its maturation process, as single-shelled particles bud from cytoplasmic viroplasm structures into the adjacent endoplasmic reticulum. The present study describes the isolation of these membrane-enveloped viral intermediates from rotavirus SA11-infected Ma104 cells. The enveloped intermediates comprised the proteins VP1, VP2, VP4, VP6, VP7, and NS28 and small amounts of NS35 and NS34. VP7 in the intermediate particles was recognized by either a polyclonal antibody to VP7, which previous studies had shown recognizes the membrane-associated form of VP7, or a monoclonal antibody which recognizes VP7 on mature virus. NS28, VP7, and VP4 could be complexed to a higher-molecular-weight form when the membrane-permeable cross-linker dithiobis(succinimidylproprionate) was used. However, when an impermeable cross-linker was used, the structural proteins, including VP7, were not accessible to cross-linking. Velocity sedimentation of cross-linked immunoisolated enveloped virus particles showed that VP7 and VP4 were located in the same fractions only when the membrane-permeable cross-linker was used, implying their heterooligomeric association during outer capsid formation. When intermediate enveloped virus particles were treated with protease, VP6 and VP7 were protected, but not in the presence of detergent. Taken together, these results support the idea that in the membrane-enveloped intermediate, VP7 is repositioned from its location in the endoplasmic reticulum lumen back across the viral membrane envelope to the inferior of the virus particle during the maturation process.

Full text

PDF
4723

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altenburg B. C., Graham D. Y., Estes M. K. Ultrastructural study of rotavirus replication in cultured cells. J Gen Virol. 1980 Jan;46(1):75–85. doi: 10.1099/0022-1317-46-1-75. [DOI] [PubMed] [Google Scholar]
  2. Au K. S., Chan W. K., Burns J. W., Estes M. K. Receptor activity of rotavirus nonstructural glycoprotein NS28. J Virol. 1989 Nov;63(11):4553–4562. doi: 10.1128/jvi.63.11.4553-4562.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Balch W. E., Rothman J. E. Characterization of protein transport between successive compartments of the Golgi apparatus: asymmetric properties of donor and acceptor activities in a cell-free system. Arch Biochem Biophys. 1985 Jul;240(1):413–425. doi: 10.1016/0003-9861(85)90046-3. [DOI] [PubMed] [Google Scholar]
  4. Bergmann C. C., Maass D., Poruchynsky M. S., Atkinson P. H., Bellamy A. R. Topology of the non-structural rotavirus receptor glycoprotein NS28 in the rough endoplasmic reticulum. EMBO J. 1989 Jun;8(6):1695–1703. doi: 10.1002/j.1460-2075.1989.tb03561.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ericson B. L., Graham D. Y., Mason B. B., Hanssen H. H., Estes M. K. Two types of glycoprotein precursors are produced by the simian rotavirus SA11. Virology. 1983 Jun;127(2):320–332. doi: 10.1016/0042-6822(83)90147-2. [DOI] [PubMed] [Google Scholar]
  6. Estes M. K., Palmer E. L., Obijeski J. F. Rotaviruses: a review. Curr Top Microbiol Immunol. 1983;105:123–184. doi: 10.1007/978-3-642-69159-1_3. [DOI] [PubMed] [Google Scholar]
  7. Ghosh S., Chevesich J., Maitra U. Further characterization of eukaryotic initiation factor 5 from rabbit reticulocytes. Immunochemical characterization and phosphorylation by casein kinase II. J Biol Chem. 1989 Mar 25;264(9):5134–5140. [PubMed] [Google Scholar]
  8. Howell K. E., Schmid R., Ugelstad J., Gruenberg J. Immunoisolation using magnetic solid supports: subcellular fractionation for cell-free functional studies. Methods Cell Biol. 1989;31:265–292. doi: 10.1016/s0091-679x(08)61615-5. [DOI] [PubMed] [Google Scholar]
  9. Kabcenell A. K., Poruchynsky M. S., Bellamy A. R., Greenberg H. B., Atkinson P. H. Two forms of VP7 are involved in assembly of SA11 rotavirus in endoplasmic reticulum. J Virol. 1988 Aug;62(8):2929–2941. doi: 10.1128/jvi.62.8.2929-2941.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kalica A. R., Flores J., Greenberg H. B. Identification of the rotaviral gene that codes for hemagglutination and protease-enhanced plaque formation. Virology. 1983 Feb;125(1):194–205. doi: 10.1016/0042-6822(83)90073-9. [DOI] [PubMed] [Google Scholar]
  11. Liu M., Offit P. A., Estes M. K. Identification of the simian rotavirus SA11 genome segment 3 product. Virology. 1988 Mar;163(1):26–32. doi: 10.1016/0042-6822(88)90230-9. [DOI] [PubMed] [Google Scholar]
  12. Maass D. R., Atkinson P. H. Rotavirus proteins VP7, NS28, and VP4 form oligomeric structures. J Virol. 1990 Jun;64(6):2632–2641. doi: 10.1128/jvi.64.6.2632-2641.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Meyer J. C., Bergmann C. C., Bellamy A. R. Interaction of rotavirus cores with the nonstructural glycoprotein NS28. Virology. 1989 Jul;171(1):98–107. doi: 10.1016/0042-6822(89)90515-1. [DOI] [PubMed] [Google Scholar]
  14. Meyer L. J., Milburn S. C., Hershey J. W. Immunochemical characterization of mammalian protein synthesis initiation factors. Biochemistry. 1982 Aug 31;21(18):4206–4212. doi: 10.1021/bi00261a003. [DOI] [PubMed] [Google Scholar]
  15. Petrie B. L., Estes M. K., Graham D. Y. Effects of tunicamycin on rotavirus morphogenesis and infectivity. J Virol. 1983 Apr;46(1):270–274. doi: 10.1128/jvi.46.1.270-274.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sabara M., Babiuk L. A., Gilchrist J., Misra V. Effect of tunicamycin on rotavirus assembly and infectivity. J Virol. 1982 Sep;43(3):1082–1090. doi: 10.1128/jvi.43.3.1082-1090.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Soler C., Musalem C., Loroño M., Espejo R. T. Association of viral particles and viral proteins with membranes in SA11-infected cells. J Virol. 1982 Dec;44(3):983–992. doi: 10.1128/jvi.44.3.983-992.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Street J. E., Croxson M. C., Chadderton W. F., Bellamy A. R. Sequence diversity of human rotavirus strains investigated by northern blot hybridization analysis. J Virol. 1982 Aug;43(2):369–378. doi: 10.1128/jvi.43.2.369-378.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES