Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1990 Mar;64(3):1357–1359. doi: 10.1128/jvi.64.3.1357-1359.1990

In vitro synthesis and processing of herpes simplex virus type 2 gG-2, using cell-free transcription and translation systems.

S K Weldon 1, H K Su 1, J D Fetherston 1, R J Courtney 1
PMCID: PMC249256  PMID: 2154614

Abstract

Translation of in vitro-synthesized herpes simplex virus type 2 (HSV-2) gG-2 mRNA in a reticulocyte lysate system was used to study the processing of HSV-2 gG-2. In the presence of canine pancreatic microsomal membranes, a single species that is protected from trypsin digestion was detected. This product comigrates with the 104,000-Mr (104K) high mannose intermediate seen in HSV-2-infected-cell lysates. Endo-beta-N-acetylglucosaminidase H treatment of the in vitro-synthesized 104K protein yielded a single product migrating at 100 K. The 72K and 31K cleavage products of gG-2 were not observed in the in vitro system. These data show that the molecular weight of the nonglycosylated form of the gG-2 protein is 100,000 and that the cotranslational processing of this protein in the endoplasmic reticulum yields the 104K high-mannose intermediate.

Full text

PDF
1358

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson D. J., Blobel G. Immunoprecipitation of proteins from cell-free translations. Methods Enzymol. 1983;96:111–120. doi: 10.1016/s0076-6879(83)96012-3. [DOI] [PubMed] [Google Scholar]
  2. Balachandran N., Hutt-Fletcher L. M. Synthesis and processing of glycoprotein gG of herpes simplex virus type 2. J Virol. 1985 Jun;54(3):825–832. doi: 10.1128/jvi.54.3.825-832.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Glisin V., Crkvenjakov R., Byus C. Ribonucleic acid isolated by cesium chloride centrifugation. Biochemistry. 1974 Jun 4;13(12):2633–2637. doi: 10.1021/bi00709a025. [DOI] [PubMed] [Google Scholar]
  4. Hodgman T. C., Minson A. C. The herpes simplex virus type 2 equivalent of the herpes simplex virus type 1 US7 gene and its flanking sequences. Virology. 1986 Aug;153(1):1–11. doi: 10.1016/0042-6822(86)90002-4. [DOI] [PubMed] [Google Scholar]
  5. Kozak M. A profusion of controls. J Cell Biol. 1988 Jul;107(1):1–7. doi: 10.1083/jcb.107.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. McGeoch D. J., Moss H. W., McNab D., Frame M. C. DNA sequence and genetic content of the HindIII l region in the short unique component of the herpes simplex virus type 2 genome: identification of the gene encoding glycoprotein G, and evolutionary comparisons. J Gen Virol. 1987 Jan;68(Pt 1):19–38. doi: 10.1099/0022-1317-68-1-19. [DOI] [PubMed] [Google Scholar]
  7. Su H. K., Courtney R. J. Inducible expression of herpes simplex virus type 2 glycoprotein gene gG-2 in a mammalian cell line. J Virol. 1988 Oct;62(10):3668–3674. doi: 10.1128/jvi.62.10.3668-3674.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Su H. K., Eberle R., Courtney R. J. Processing of the herpes simplex virus type 2 glycoprotein gG-2 results in secretion of a 34,000-Mr cleavage product. J Virol. 1987 May;61(5):1735–1737. doi: 10.1128/jvi.61.5.1735-1737.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Takatsuki A., Tamura G. Effect of tunicamycin on the synthesis of macromolecules in cultures of chick embryo fibroblasts infected with Newcastle disease virus. J Antibiot (Tokyo) 1971 Nov;24(11):785–794. doi: 10.7164/antibiotics.24.785. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES