Skip to main content
Netherlands Heart Journal logoLink to Netherlands Heart Journal
. 2005 Nov;13(11):408–415.

Nuclear cardiac imaging for the assessment of myocardial viability

RHJA Slart, JJ Bax, EE van der Wall, DJ van Veldhuisen, PL Jager, RA Dierckx
PMCID: PMC2497364  PMID: 25696432

Abstract

An important aspect of the diagnostic and prognostic work-up of patients with ischaemic cardiomyopathy is the assessment of myocardial viability. Patients with left ventricular dysfunction who have viable myocardium are the patients at highest risk because of the potential for ischaemia but at the same time benefit most from revascularisation. It is important to identify viable myocardium in these patients, and radionuclide myocardial scintigraphy is an excellent tool for this. Single-photon emission computed tomography perfusion scintigraphy (SPECT), whether using 201thallium, 99mTc-sestamibi, or 99mTc- tetrofosmin, in stress and/or rest protocols, has consistently been shown to be an effective modality for identifying myocardial viability and guiding appropriate management.

Metabolic and perfusion imaging with positron emission tomography radiotracers frequently adds additional information and is a powerful tool for predicting which patients will have an improved outcome from revascularisation. New techniques in the nuclear cardiology field, such as attenuation corrected SPECT, dual isotope simultaneous acquisition (DISA) SPECT and gated FDG PET are promising and will further improve the detection of myocardial viability. Also the combination of multislice computed tomography scanners with PET opens possibilities of adding coronary calcium scoring and noninvasive coronary angiography to myocardial perfusion imaging and quantification.

Keywords: myocardial viability, LV dysfunction, new nuclear medicine techniques

Full text

PDF
410

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baer F. M., Voth E., Schneider C. A., Theissen P., Schicha H., Sechtem U. Comparison of low-dose dobutamine-gradient-echo magnetic resonance imaging and positron emission tomography with [18F]fluorodeoxyglucose in patients with chronic coronary artery disease. A functional and morphological approach to the detection of residual myocardial viability. Circulation. 1995 Feb 15;91(4):1006–1015. doi: 10.1161/01.cir.91.4.1006. [DOI] [PubMed] [Google Scholar]
  2. Bax J. J., Poldermans D., Elhendy A., Cornel J. H., Boersma E., Rambaldi R., Roelandt J. R., Fioretti P. M. Improvement of left ventricular ejection fraction, heart failure symptoms and prognosis after revascularization in patients with chronic coronary artery disease and viable myocardium detected by dobutamine stress echocardiography. J Am Coll Cardiol. 1999 Jul;34(1):163–169. doi: 10.1016/s0735-1097(99)00157-6. [DOI] [PubMed] [Google Scholar]
  3. Bax J. J., Veening M. A., Visser F. C., van Lingen A., Heine R. J., Cornel J. H., Visser C. A. Optimal metabolic conditions during fluorine-18 fluorodeoxyglucose imaging; a comparative study using different protocols. Eur J Nucl Med. 1997 Jan;24(1):35–41. doi: 10.1007/BF01728306. [DOI] [PubMed] [Google Scholar]
  4. Bergmann S. R. Cardiac positron emission tomography. Semin Nucl Med. 1998 Oct;28(4):320–340. doi: 10.1016/s0001-2998(98)80036-6. [DOI] [PubMed] [Google Scholar]
  5. Bonow R. O. Identification of viable myocardium. Circulation. 1996 Dec 1;94(11):2674–2680. doi: 10.1161/01.cir.94.11.2674. [DOI] [PubMed] [Google Scholar]
  6. Bounous E. P., Mark D. B., Pollock B. G., Hlatky M. A., Harrell F. E., Jr, Lee K. L., Rankin J. S., Wechsler A. S., Pryor D. B., Califf R. M. Surgical survival benefits for coronary disease patients with left ventricular dysfunction. Circulation. 1988 Sep;78(3 Pt 2):I151–I157. [PubMed] [Google Scholar]
  7. Braunwald E., Kloner R. A. The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation. 1982 Dec;66(6):1146–1149. doi: 10.1161/01.cir.66.6.1146. [DOI] [PubMed] [Google Scholar]
  8. Camici P., Ferrannini E., Opie L. H. Myocardial metabolism in ischemic heart disease: basic principles and application to imaging by positron emission tomography. Prog Cardiovasc Dis. 1989 Nov-Dec;32(3):217–238. doi: 10.1016/0033-0620(89)90027-3. [DOI] [PubMed] [Google Scholar]
  9. Di Carli M. F., Davidson M., Little R., Khanna S., Mody F. V., Brunken R. C., Czernin J., Rokhsar S., Stevenson L. W., Laks H. Value of metabolic imaging with positron emission tomography for evaluating prognosis in patients with coronary artery disease and left ventricular dysfunction. Am J Cardiol. 1994 Mar 15;73(8):527–533. doi: 10.1016/0002-9149(94)90327-1. [DOI] [PubMed] [Google Scholar]
  10. Dilsizian V., Rocco T. P., Freedman N. M., Leon M. B., Bonow R. O. Enhanced detection of ischemic but viable myocardium by the reinjection of thallium after stress-redistribution imaging. N Engl J Med. 1990 Jul 19;323(3):141–146. doi: 10.1056/NEJM199007193230301. [DOI] [PubMed] [Google Scholar]
  11. Dispersyn G. D., Ausma J., Thoné F., Flameng W., Vanoverschelde J. L., Allessie M. A., Ramaekers F. C., Borgers M. Cardiomyocyte remodelling during myocardial hibernation and atrial fibrillation: prelude to apoptosis. Cardiovasc Res. 1999 Sep;43(4):947–957. doi: 10.1016/s0008-6363(99)00096-6. [DOI] [PubMed] [Google Scholar]
  12. Emond M., Mock M. B., Davis K. B., Fisher L. D., Holmes D. R., Jr, Chaitman B. R., Kaiser G. C., Alderman E., Killip T., 3rd Long-term survival of medically treated patients in the Coronary Artery Surgery Study (CASS) Registry. Circulation. 1994 Dec;90(6):2645–2657. doi: 10.1161/01.cir.90.6.2645. [DOI] [PubMed] [Google Scholar]
  13. Haunstetter A., Izumo S. Apoptosis: basic mechanisms and implications for cardiovascular disease. Circ Res. 1998 Jun 15;82(11):1111–1129. doi: 10.1161/01.res.82.11.1111. [DOI] [PubMed] [Google Scholar]
  14. Kerr J. F., Wyllie A. H., Currie A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972 Aug;26(4):239–257. doi: 10.1038/bjc.1972.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. King L. M., Opie L. H. Glucose delivery is a major determinant of glucose utilisation in the ischemic myocardium with a residual coronary flow. Cardiovasc Res. 1998 Aug;39(2):381–392. doi: 10.1016/s0008-6363(98)00100-x. [DOI] [PubMed] [Google Scholar]
  16. Kloner R. A., Bolli R., Marban E., Reinlib L., Braunwald E. Medical and cellular implications of stunning, hibernation, and preconditioning: an NHLBI workshop. Circulation. 1998 May 12;97(18):1848–1867. doi: 10.1161/01.cir.97.18.1848. [DOI] [PubMed] [Google Scholar]
  17. Knuuti M. J., Nuutila P., Ruotsalainen U., Teräs M., Saraste M., Härkönen R., Ahonen A., Wegelius U., Haapanen A., Bergman J. The value of quantitative analysis of glucose utilization in detection of myocardial viability by PET. J Nucl Med. 1993 Dec;34(12):2068–2075. [PubMed] [Google Scholar]
  18. Knuuti M. J., Yki-Järvinen H., Voipio-Pulkki L. M., Mäki M., Ruotsalainen U., Härkönen R., Teräs M., Haaparanta M., Bergman J., Hartiala J. Enhancement of myocardial [fluorine-18]fluorodeoxyglucose uptake by a nicotinic acid derivative. J Nucl Med. 1994 Jun;35(6):989–998. [PubMed] [Google Scholar]
  19. Lucignani G., Paolini G., Landoni C., Zuccari M., Paganelli G., Galli L., Di Credico G., Vanoli G., Rossetti C., Mariani M. A. Presurgical identification of hibernating myocardium by combined use of technetium-99m hexakis 2-methoxyisobutylisonitrile single photon emission tomography and fluorine-18 fluoro-2-deoxy-D-glucose positron emission tomography in patients with coronary artery disease. Eur J Nucl Med. 1992;19(10):874–881. doi: 10.1007/BF00168164. [DOI] [PubMed] [Google Scholar]
  20. Maes A. F., Borgers M., Flameng W., Nuyts J. L., van de Werf F., Ausma J. J., Sergeant P., Mortelmans L. A. Assessment of myocardial viability in chronic coronary artery disease using technetium-99m sestamibi SPECT. Correlation with histologic and positron emission tomographic studies and functional follow-up. J Am Coll Cardiol. 1997 Jan;29(1):62–68. doi: 10.1016/s0735-1097(96)00442-1. [DOI] [PubMed] [Google Scholar]
  21. Ragosta M., Beller G. A., Watson D. D., Kaul S., Gimple L. W. Quantitative planar rest-redistribution 201Tl imaging in detection of myocardial viability and prediction of improvement in left ventricular function after coronary bypass surgery in patients with severely depressed left ventricular function. Circulation. 1993 May;87(5):1630–1641. doi: 10.1161/01.cir.87.5.1630. [DOI] [PubMed] [Google Scholar]
  22. Rahimtoola S. H. The hibernating myocardium. Am Heart J. 1989 Jan;117(1):211–221. doi: 10.1016/0002-8703(89)90685-6. [DOI] [PubMed] [Google Scholar]
  23. Rosamond T. L., Abendschein D. R., Sobel B. E., Bergmann S. R., Fox K. A. Metabolic fate of radiolabeled palmitate in ischemic canine myocardium: implications for positron emission tomography. J Nucl Med. 1987 Aug;28(8):1322–1329. [PubMed] [Google Scholar]
  24. Schöder H., Campisi R., Ohtake T., Hoh C. K., Moon D. H., Czernin J., Schelbert H. R. Blood flow-metabolism imaging with positron emission tomography in patients with diabetes mellitus for the assessment of reversible left ventricular contractile dysfunction. J Am Coll Cardiol. 1999 Apr;33(5):1328–1337. doi: 10.1016/s0735-1097(99)00010-8. [DOI] [PubMed] [Google Scholar]
  25. Tamaki N., Kawamoto M., Tadamura E., Magata Y., Yonekura Y., Nohara R., Sasayama S., Nishimura K., Ban T., Konishi J. Prediction of reversible ischemia after revascularization. Perfusion and metabolic studies with positron emission tomography. Circulation. 1995 Mar 15;91(6):1697–1705. doi: 10.1161/01.cir.91.6.1697. [DOI] [PubMed] [Google Scholar]
  26. Tamaki N., Yonekura Y., Yamashita K., Saji H., Magata Y., Senda M., Konishi Y., Hirata K., Ban T., Konishi J. Positron emission tomography using fluorine-18 deoxyglucose in evaluation of coronary artery bypass grafting. Am J Cardiol. 1989 Oct 15;64(14):860–865. doi: 10.1016/0002-9149(89)90832-1. [DOI] [PubMed] [Google Scholar]
  27. Thimister Paul W. L., Hofstra Leo, Liem Ing Han, Boersma Hendrikus H., Kemerink Gerrit, Reutelingsperger Chris P. M., Heidendal Guido A. K. In vivo detection of cell death in the area at risk in acute myocardial infarction. J Nucl Med. 2003 Mar;44(3):391–396. [PubMed] [Google Scholar]
  28. Tillisch J., Brunken R., Marshall R., Schwaiger M., Mandelkern M., Phelps M., Schelbert H. Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med. 1986 Apr 3;314(14):884–888. doi: 10.1056/NEJM198604033141405. [DOI] [PubMed] [Google Scholar]
  29. Zimmermann R., Mall G., Rauch B., Zimmer G., Gabel M., Zehelein J., Bubeck B., Tillmanns H., Hagl S., Kübler W. Residual 201Tl activity in irreversible defects as a marker of myocardial viability. Clinicopathological study. Circulation. 1995 Feb 15;91(4):1016–1021. doi: 10.1161/01.cir.91.4.1016. [DOI] [PubMed] [Google Scholar]
  30. vom Dahl J., Eitzman D. T., al-Aouar Z. R., Kanter H. L., Hicks R. J., Deeb G. M., Kirsh M. M., Schwaiger M. Relation of regional function, perfusion, and metabolism in patients with advanced coronary artery disease undergoing surgical revascularization. Circulation. 1994 Nov;90(5):2356–2366. doi: 10.1161/01.cir.90.5.2356. [DOI] [PubMed] [Google Scholar]

Articles from Netherlands Heart Journal are provided here courtesy of Springer

RESOURCES