Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1969 Aug;99(2):441–449. doi: 10.1128/jb.99.2.441-449.1969

Genetic Separation of the Inosinic Acid Cyclohydrolase-Transformylase Complex of Salmonella typhimurium

Joseph S Gots a, Fram R Dalal a,1, Susan R Shumas a
PMCID: PMC250036  PMID: 4897111

Abstract

Genetic and enzymatic analyses were made with the purH mutants of Salmonella typhimurium. These mutants are purine auxotrophs which are deficient in the conversion of phosphoribosyl-aminoimidazolecarboxamide (AIC) to inosine-5′-monophosphate (IMP). Two steps are required for this process: phosphoribosyl-AIC transformylase (EC 2.1.2.3) and IMP cyclohydrolase (EC 3.5.4.10). Genetic analysis identified two complementation groups, I and II, and a third group of noncomplementing mutants (I–II). Mutations in gene I lead to complete loss of transformylase activity and no loss of cyclohydrolase activity if the mutation is of the missense type, but partial loss if it is of the chain-terminating type (nonsense or frameshift). Gene II mutants are all of the missense type and show normal transformylase activity but no cyclohydrolase activity. The noncomplementing mutants (I–II) are all of the chain-terminating type and are completely deficient in both activities. The results are explained and discussed in terms of subunit interactions of a stable enzyme complex.

Full text

PDF
442

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMES B. N., MARTIN R. G., GARRY B. J. The first step of histidine biosynthesis. J Biol Chem. 1961 Jul;236:2019–2026. [PubMed] [Google Scholar]
  2. Ames B. N., Whitfield H. J., Jr Frameshift mutagenesis in Salmonella. Cold Spring Harb Symp Quant Biol. 1966;31:221–225. doi: 10.1101/sqb.1966.031.01.030. [DOI] [PubMed] [Google Scholar]
  3. Bauerle R. H., Margolin P. A multifunctional enzyme complex in the tryptophan pathway of Salmonella typhimurium: comparison of polarity and pseudopolarity mutations. Cold Spring Harb Symp Quant Biol. 1966;31:203–214. doi: 10.1101/sqb.1966.031.01.028. [DOI] [PubMed] [Google Scholar]
  4. Berkowitz D., Hushon J. M., Whitfield H. J., Jr, Roth J., Ames B. N. Procedure for identifying nonsense mutations. J Bacteriol. 1968 Jul;96(1):215–220. doi: 10.1128/jb.96.1.215-220.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dalal F. R., Gots R. E., Gots J. S. Mechanism of adenine inhibition in adenine-sensitive mutants of Salmonella typhimurium. J Bacteriol. 1966 Feb;91(2):507–513. doi: 10.1128/jb.91.2.507-513.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. FLAKS J. G., ERWIN M. J., BUCHANAN J. M. Biosynthesis of the purines. XVIII. 5-Amino-1-ribosyl-4-imidazolecarboxamide 5'-phosphate transformylase and inosinicase. J Biol Chem. 1957 Dec;229(2):603–612. [PubMed] [Google Scholar]
  7. Gots J. S., Gollub E. G. SEQUENTIAL BLOCKADE IN ADENINE BIOSYNTHESIS BY GENETIC LOSS OF AN APPARENT BIFUNCTIONAL DEACYLASE. Proc Natl Acad Sci U S A. 1957 Sep 15;43(9):826–834. doi: 10.1073/pnas.43.9.826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. HARTMAN P. E., HARTMAN Z., SERMAN D. Complementation mapping by abortive transduction of histidine requiring Salmonella mutants. J Gen Microbiol. 1960 Apr;22:354–368. doi: 10.1099/00221287-22-2-354. [DOI] [PubMed] [Google Scholar]
  9. HARTMAN P. E., LOPER J. C., SERMAN D. Fine structure mapping by complete transduction between histidine-requiring Salmonella mutants. J Gen Microbiol. 1960 Apr;22:323–353. doi: 10.1099/00221287-22-2-323. [DOI] [PubMed] [Google Scholar]
  10. HUANG H. T. PREPARATION OF 5-AMINO-1-BETA-D-RIBOSYL-4-IMIDAZOLECARBOXAMIDE-5' -PHOSPHATE AND N-(5-AMINO-1-BETA-D-RIBOSYL-4-IMIDAZOLECARBONYL)-L-ASPARTIC ACID 5' -PHOSPHATE. Biochemistry. 1965 Jan;4:58–62. doi: 10.1021/bi00877a011. [DOI] [PubMed] [Google Scholar]
  11. Ito J., Yanofsky C. Anthranilate synthetase, an enzyme specified by the tryptophan operon of Escherichia coli: Comparative studies on the complex and the subunits. J Bacteriol. 1969 Feb;97(2):734–742. doi: 10.1128/jb.97.2.734-742.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Joyce B. K., Himes R. H. Formyltetrahydrofolate synthetase. A study of equilibrium reaction rates. J Biol Chem. 1966 Dec 10;241(23):5716–5724. [PubMed] [Google Scholar]
  13. LEVIN A. P., MAGASANIK B. The effect of purines on the formation of two enzymes involved in purine biosynthesis. J Biol Chem. 1961 Jan;236:184–188. [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. MAGASANIK B., KARIBIAN D. Purine nucleotide cycles and their metabolic role. J Biol Chem. 1960 Sep;235:2672–2681. [PubMed] [Google Scholar]
  16. Martin R. G., Silbert D. F., Smith W. E., Whitfield H. J., Jr Polarity in the histidine operon. J Mol Biol. 1966 Nov 14;21(2):357–369. doi: 10.1016/0022-2836(66)90104-5. [DOI] [PubMed] [Google Scholar]
  17. Newton W. A., Beckwith J. R., Zipser D., Brenner S. Nonsense mutants and polarity in the lac operon of Escherichia coli. J Mol Biol. 1965 Nov;14(1):290–296. doi: 10.1016/s0022-2836(65)80250-9. [DOI] [PubMed] [Google Scholar]
  18. Nishikawa H., Momose H., Shiio I. Pathway of purine nucleotide synthesis in Bacillus subtilis. J Biochem. 1968 Feb;63(2):149–155. doi: 10.1093/oxfordjournals.jbchem.a128755. [DOI] [PubMed] [Google Scholar]
  19. SHAW E. A new synthesis of the purines adenine, hypoxanthine, xanthine, and isoguanine. J Biol Chem. 1950 Jul;185(1):439–447. [PubMed] [Google Scholar]
  20. VOGEL H. J., BONNER D. M. Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem. 1956 Jan;218(1):97–106. [PubMed] [Google Scholar]
  21. Whitfield H. J., Jr, Martin R. G., Ames B. N. Classification of aminotransferase (C gene) mutants in the histidine operon. J Mol Biol. 1966 Nov 14;21(2):335–355. doi: 10.1016/0022-2836(66)90103-3. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES