Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1970 Mar;101(3):731–737. doi: 10.1128/jb.101.3.731-737.1970

Isolation of Conditionally Putrescine-Deficient Mutants of Escherichia coli

David R Morris 1, Caroline M Jorstad 1
PMCID: PMC250385  PMID: 4908781

Abstract

Mutants defective in the conversion of arginine to putrescine were found by screening clones from mutagenized cultures for inability to produce urea during growth in arginine-supplemented media. Two partially blocked mutants were isolated; one was deficient in arginine decarboxylase and the other was deficient in agmatine ureohydrolase. As predicted from the pattern of putrescine synthesis in Escherichia coli, these mutants were conditionally putrescine-deficient. When grown in either minimal or ornithine-supplemented media, conditions which lead to preferential utilization of the ornithine to putrescine pathway, the mutants had normal intracellular polyamine levels. However, when the mutants were placed in arginine-supplemented media, the level of intracellular putrescine was lowered markedly. Under conditions where intracellular putrescine was 1% of normal, the doubling time of the mutants was increased approximately 10%. The putrescine-deficient mutants had wild-type morphology, normal levels of protein and ribonucleic acid (RNA), and stringent amino acid control of RNA synthesis.

Full text

PDF
736

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMES B. N., DUBIN D. T. The role of polyamines in the neutralization of bacteriophage deoxyribonucleic acid. J Biol Chem. 1960 Mar;235:769–775. [PubMed] [Google Scholar]
  2. AMES B. N., GARRY B., HERZENBERG L. A. The genetic control of the enzymes of histidine biosynthesis in Salmonella typhimurium. J Gen Microbiol. 1960 Apr;22:369–378. doi: 10.1099/00221287-22-2-369. [DOI] [PubMed] [Google Scholar]
  3. Abraham K. A. Studies on DNA-dependent RNA polymerase from Escherichia coli. 1. The mechanism of polyamine induced stimulation of enzyme activity. Eur J Biochem. 1968 Jun;5(1):143–146. doi: 10.1111/j.1432-1033.1968.tb00348.x. [DOI] [PubMed] [Google Scholar]
  4. BRETTHAUER R. K., MARCUS L., CHALOUPKA J., HALVORSON H. O., BOCK R. M. AMINO ACID INCORPORATION INTO PROTEIN BY CELL-FREE EXTRACTS OF YEAST. Biochemistry. 1963 Sep-Oct;2:1079–1084. doi: 10.1021/bi00905a029. [DOI] [PubMed] [Google Scholar]
  5. COHEN S. S., LICHTENSTEIN J. Polyamines and ribosome structure. J Biol Chem. 1960 Jul;235:2112–2116. [PubMed] [Google Scholar]
  6. COLBOURN J. L., WITHERSPOON B. H., HERBST E. J. Effect of intracellular spermine on ribosomes of Escherichia coli. Biochim Biophys Acta. 1961 May 13;49:422–424. doi: 10.1016/0006-3002(61)90155-x. [DOI] [PubMed] [Google Scholar]
  7. Choi Y. S., Carr C. W. Ion-binding studies of ribonucleic acid and Escherichia coli ribosomes. J Mol Biol. 1967 Apr 28;25(2):331–345. doi: 10.1016/0022-2836(67)90145-3. [DOI] [PubMed] [Google Scholar]
  8. DUBIN D. T., ROSENTHAL S. M. The acetylation of polyamines in Escherichia coli. J Biol Chem. 1960 Mar;235:776–782. [PubMed] [Google Scholar]
  9. Ezekiel D. H., Brockman H. Effect of spermidine treatment on amino acid availability in amino acid-starved Escherichia coli. J Mol Biol. 1968 Feb 14;31(3):541–552. doi: 10.1016/0022-2836(68)90426-9. [DOI] [PubMed] [Google Scholar]
  10. FELSENFELD G., HUANG S. L. Some effects of charge and structure upon ionic interactions of nucleic acids. Biochim Biophys Acta. 1961 Jul 22;51:19–32. doi: 10.1016/0006-3002(61)91012-5. [DOI] [PubMed] [Google Scholar]
  11. FOX C. F., WEISS S. B. ENZYMATIC SYNTHESIS OF RIBONUCLEIC ACID. II. PROPERTIES OF THE DEOXYRIBONUCLEIC ACID-PRIMED REACTION WITH MICROCOCCUS LYSODEIKTICUS RIBONUCLEIC ACID POLYMERASE. J Biol Chem. 1964 Jan;239:175–185. [PubMed] [Google Scholar]
  12. GORINI L., GUNDERSEN W., BURGER M. Genetics of regulation of enzyme synthesis in the arginine biosynthetic pathway of Escherichia coli. Cold Spring Harb Symp Quant Biol. 1961;26:173–182. doi: 10.1101/sqb.1961.026.01.022. [DOI] [PubMed] [Google Scholar]
  13. GORINI L., KAUFMAN H. Selecting bacterial mutants by the penicillin method. Science. 1960 Feb 26;131(3400):604–605. doi: 10.1126/science.131.3400.604. [DOI] [PubMed] [Google Scholar]
  14. Gale E. F. The production of amines by bacteria: The decarboxylation of amino-acids by strains of Bacterium coli. Biochem J. 1940 Mar;34(3):392–413. doi: 10.1042/bj0340392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. HAROLD F. M. STABILIZATION OF STREPTOCOCCUS FAECALIS PROTOPLASTS BY SPERMINE. J Bacteriol. 1964 Nov;88:1416–1420. doi: 10.1128/jb.88.5.1416-1420.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. HERBST E. J., GLINOS E. B., AMUNDSEN L. H. An analysis of the putrescine requirement of Hemophilus parainfluenzae. J Biol Chem. 1955 May;214(1):175–184. [PubMed] [Google Scholar]
  17. HERBST E. J., WEAVER R. H., KEISTER D. L. The gram reaction and cell composition: diamines and polyamines. Arch Biochem Biophys. 1958 May;75(1):171–177. doi: 10.1016/0003-9861(58)90407-7. [DOI] [PubMed] [Google Scholar]
  18. HERSHKO A., AMOZ S., MAGER J. Effect of polyamines and divalent metals on in vitro incorporation of amino acids into ribonucleoprotein particles. Biochem Biophys Res Commun. 1961 May 15;5:46–51. doi: 10.1016/0006-291x(61)90078-x. [DOI] [PubMed] [Google Scholar]
  19. Hirschman S., Leng M., Felsenfield G. Interaction of spermine and DNA. Biopolymers. 1967 Feb;5(2):227–233. doi: 10.1002/bip.1967.360050209. [DOI] [PubMed] [Google Scholar]
  20. Hirshfield I. N., Rosenfeld H. J., Leifer Z., Maas W. K. Isolation and characterization of a mutant of Escherichia coli blocked in the synthesis of putrescine. J Bacteriol. 1970 Mar;101(3):725–730. doi: 10.1128/jb.101.3.725-730.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hunninghake D., Grisolia S. A sensitive and convenient micromethod for estimation of urea, citrulline, and carbamyl derivatives. Anal Biochem. 1966 Aug;16(2):200–205. doi: 10.1016/0003-2697(66)90147-3. [DOI] [PubMed] [Google Scholar]
  22. KRAKOW J. S. RIBONUCLEIC ACID POLYMERASE OF AZOTOBACTER VINELANDII. III. EFFECT OF POLYAMINES. Biochim Biophys Acta. 1963 Aug 20;72:566–571. [PubMed] [Google Scholar]
  23. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  24. MAAS W. K. Studies on repression of arginine biosynthesis in Escherichia coli. Cold Spring Harb Symp Quant Biol. 1961;26:183–191. doi: 10.1101/sqb.1961.026.01.023. [DOI] [PubMed] [Google Scholar]
  25. MAGER J. Influence of osmotic pressure on the polyamine requirement of Neisseria perflava and Pasteurella tularensis for growth in defined media. Nature. 1955 Nov 12;176(4489):933–934. doi: 10.1038/176933a0. [DOI] [PubMed] [Google Scholar]
  26. MAGER J. Spermine as a protective agent against osmotic lysis. Nature. 1959 Jun 27;183:1827–1828. doi: 10.1038/1831827a0. [DOI] [PubMed] [Google Scholar]
  27. MAGER J. The stabilizing effect of spermine and related polyamines and bacterial protoplasts. Biochim Biophys Acta. 1959 Dec;36:529–531. doi: 10.1016/0006-3002(59)90195-7. [DOI] [PubMed] [Google Scholar]
  28. MOLLER M. L., KIM K. EFFECTS OF PUTRESCINE AND MAGNESIUM ON THE RIBOSOMES OF A PSEUDOMONAS. Biochem Biophys Res Commun. 1965 Jun 18;20:46–52. doi: 10.1016/0006-291x(65)90948-4. [DOI] [PubMed] [Google Scholar]
  29. Mills J., Dubin D. T. Some effects of spermine on Escherichia coli. Mol Pharmacol. 1966 Jul;2(4):311–318. [PubMed] [Google Scholar]
  30. Morris D. R., Koffron K. L. Putrescine biosynthesis in Escherichia coli. Regulation through pathway selection. J Biol Chem. 1969 Nov 25;244(22):6094–6099. [PubMed] [Google Scholar]
  31. Morris D. R., Koffron K. L. Urea production and putrescine biosynthesis by Escherichia coli. J Bacteriol. 1967 Nov;94(5):1516–1519. doi: 10.1128/jb.94.5.1516-1519.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Morris D. R., Pardee A. B. A biosynthetic ornithine decarboxylase in Escherichia coli. Biochem Biophys Res Commun. 1965 Sep 22;20(6):697–702. doi: 10.1016/0006-291x(65)90072-0. [DOI] [PubMed] [Google Scholar]
  33. NOVICK R. P., MAAS W. K. Control by endogenously synthesized arginine of the formation of ornithine transcarbamylase in Escherichia coli. J Bacteriol. 1961 Feb;81:236–240. doi: 10.1128/jb.81.2.236-240.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Petersen E. E., Kröger H., Hagen U. The influence of spermidine on the reaction of RNA nucleotidyltransferase. Biochim Biophys Acta. 1968 Jul 23;161(2):325–330. doi: 10.1016/0005-2787(68)90110-x. [DOI] [PubMed] [Google Scholar]
  35. RAZIN S., ROZANSKY R. Mechanism of the antibacterial action of spermine. Arch Biochem Biophys. 1959 Mar;81(1):36–54. doi: 10.1016/0003-9861(59)90173-0. [DOI] [PubMed] [Google Scholar]
  36. ROGOSA M., BISHOP F. S. THE GENUS VEILLONELLA . II. NUTRITIONAL STUDIES. J Bacteriol. 1964 Mar;87:574–580. doi: 10.1128/jb.87.3.574-580.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Stevens L., Morrison M. R. Studies on the role of polyamines associated with the ribosomes from Bacillus stearothermophilus. Biochem J. 1968 Jul;108(4):633–640. doi: 10.1042/bj1080633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. TABOR C. W., ROSENTHAL S. M. Pharmacology of spermine and spermidine; some effects on animals and bacteria. J Pharmacol Exp Ther. 1956 Feb;116(2):139–155. [PubMed] [Google Scholar]
  39. TABOR H., ROSENTHAL S. M., TABOR C. W. The biosynthesis of spermidine and spermine from putrescine and methionine. J Biol Chem. 1958 Oct;233(4):907–914. [PubMed] [Google Scholar]
  40. TABOR H., TABOR C. W. SPERMIDINE, SPERMINE, AND RELATED AMINES. Pharmacol Rev. 1964 Sep;16:245–300. [PubMed] [Google Scholar]
  41. TABOR H. The protective effect of spermine and other polyamines against heat denaturation of deoxyribonucleic acid. Biochemistry. 1962 May 25;1:496–501. doi: 10.1021/bi00909a021. [DOI] [PubMed] [Google Scholar]
  42. Tabor C. W., Kellogg P. D. The effect of isolation conditions on the polyamine content of Escherichia coli ribosomes. J Biol Chem. 1967 Mar 10;242(5):1044–1052. [PubMed] [Google Scholar]
  43. Tabor C. W. STABILIZATION OF PROTOPLASTS AND SPHEROPLASTS BY SPERMINE AND OTHER POLYAMINES. J Bacteriol. 1962 May;83(5):1101–1111. doi: 10.1128/jb.83.5.1101-1111.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Tabor H., Tabor C. W. Formation of 1,4-diaminobutane and of spermidine by an ornithine auxotroph of Escherichia coli grown on limiting ornithine or arginine. J Biol Chem. 1969 May 10;244(9):2286–2292. [PubMed] [Google Scholar]
  45. Takeda Y. Polyamines and protein synthesis. II. The shift in optimal concentration of Mg2+ by polyamines in the MS2 phage RNA-directed polypeptide synthesis. Biochim Biophys Acta. 1969 Mar 18;179(1):232–234. doi: 10.1016/0005-2787(69)90140-3. [DOI] [PubMed] [Google Scholar]
  46. VOGEL H. J. Aspects of repression in the regulation of enzyme synthesis: pathway-wide control and enzyme-specific response. Cold Spring Harb Symp Quant Biol. 1961;26:163–172. doi: 10.1101/sqb.1961.026.01.021. [DOI] [PubMed] [Google Scholar]
  47. VOGEL H. J., BONNER D. M. Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem. 1956 Jan;218(1):97–106. [PubMed] [Google Scholar]
  48. VYAS S., MAAS W. K. Feedback inhibition of acetylglutamate synthetase by arginine in Escherichia coli. Arch Biochem Biophys. 1963 Mar;100:542–546. doi: 10.1016/0003-9861(63)90124-3. [DOI] [PubMed] [Google Scholar]
  49. WEAVER R. H., HERBST E. J. Metabolism of diamines and polyamines in microorganisms. J Biol Chem. 1958 Apr;231(2):637–646. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES