Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1970 Mar;101(3):738–754. doi: 10.1128/jb.101.3.738-754.1970

Reexamination of the Association Between Melting Point, Buoyant Density, and Chemical Base Composition of Deoxyribonucleic Acid

J De Ley 1
PMCID: PMC250386  PMID: 5438045

Abstract

The equations currently used for the calculation of the chemical base composition of deoxyribonucleic acid (DNA), expressed as moles per cent guanine plus cytosine (% GC), from either buoyant density (ρ) or midpoint of thermal denaturation (Tm) were recalculated by using only sets of data on DNA determined with the same strains. All available information from the literature was screened and supplemented by unpublished data. The results were calculated by regression and correlation analysis and treated statistically. From the data on 96 strains of bacteria, it was calculated that% GC = 2.44 (Tm – 69.4). Tm appears to be unaffected by the substitution of cytosine by hydroxymethylcytosine. This equation is also valid for nonbacterial DNA. From the data on 84 strains of bacteria, the relation% GC = 1038.47 (–1.6616) was calculated. The constants in this equation are slightly modified when data on nonbacterial DNA are included. Both correlations differ only slightly from those currently used, but now they lean on a statistically sound basis. As a control, the relation between ρ and Tm was calculated from data of 197 strains; it agrees excellently with the above two equations.

Full text

PDF
739

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson J. R., Pramer D., Davis F. F. Nucleic acid composition of Nitrosomonas europaea. Biochim Biophys Acta. 1965 Sep 6;108(1):155–157. doi: 10.1016/0005-2787(65)90124-3. [DOI] [PubMed] [Google Scholar]
  2. Auletta A. E., Kennedy E. R. Deoxyribonucleic acid base composition of some members of the Micrococcaceae. J Bacteriol. 1966 Jul;92(1):28–34. doi: 10.1002/path.1700920103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BARBU E., LEE K. Y., WAHL R. Contenu en bases puriques et pyrimidiques des acides désoxyribonucléiques des bactéries. Ann Inst Pasteur (Paris) 1956 Aug;91(2):212–224. [PubMed] [Google Scholar]
  4. BERNS K. I., THOMAS C. A., Jr ISOLATION OF HIGH MOLECULAR WEIGHT DNA FROM HEMOPHILUS INFLUENZAE. J Mol Biol. 1965 Mar;11:476–490. doi: 10.1016/s0022-2836(65)80004-3. [DOI] [PubMed] [Google Scholar]
  5. CATLIN B. W., CUNNINGHAM L. S. GENETIC TRANSFORMATION OF NEISSERIA CATARRHALIS BY DEOXYRIBONUCLEATE PREPARATIONS HAVING DIFFERENT AVERAGE BASE COMPOSITIONS. J Gen Microbiol. 1964 Dec;37:341–352. doi: 10.1099/00221287-37-3-341. [DOI] [PubMed] [Google Scholar]
  6. CATLIN B. W., CUNNINGHAM L. S. Studies of extracellular and intracellular bacterial deoxyribonucleic acids. J Gen Microbiol. 1958 Dec;19(3):522–539. doi: 10.1099/00221287-19-3-522. [DOI] [PubMed] [Google Scholar]
  7. CATLIN B. W., CUNNINGHAM L. S. TRANSFORMING ACTIVITIES AND BASE COMPOSITION OF DEOXYRIBONUCLEATES FROM STRAINS OF MORAXELLA AND MIMA. J Gen Microbiol. 1964 Dec;37:353–367. doi: 10.1099/00221287-37-3-353. [DOI] [PubMed] [Google Scholar]
  8. CATLIN B. W., CUNNINGHAM L. S. Transforming activities and base contents of deoxyribonucleate preparations from various Neisseriae. J Gen Microbiol. 1961 Oct;26:303–312. doi: 10.1099/00221287-26-2-303. [DOI] [PubMed] [Google Scholar]
  9. CHARGAFF E., SCHULMAN H. M., SHAPIRO H. S. Protoplasts of E. coli as sources and acceptors of deoxypentose nucleic acid: rehabilitation of a deficient mutant. Nature. 1957 Oct 26;180(4591):851–852. doi: 10.1038/180851a0. [DOI] [PubMed] [Google Scholar]
  10. CHUN E. H., VAUGHAN M. H., Jr, RICH A. THE ISOLATION AND CHARACTERIZATION OF DNA ASSOCIATED WITH CHLOROPLAST PREPARATIONS. J Mol Biol. 1963 Aug;7:130–141. doi: 10.1016/s0022-2836(63)80042-x. [DOI] [PubMed] [Google Scholar]
  11. COLWELL R. R., MANDEL M. ADANSONIAN ANALYSIS AND DEOXYRIBONUCLEIC ACID BASE COMPOSITION OF SERRATIA MARCESCENS. J Bacteriol. 1965 Feb;89:454–461. doi: 10.1128/jb.89.2.454-461.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. COLWELL R. R., MANDEL M. ADANSONIAN ANALYSIS AND DEOXYRIBONUCLEIC ACID BASE COMPOSITION OF SOME GRAM-NEGATIVE BACTERIA. J Bacteriol. 1964 Jun;87:1412–1422. doi: 10.1128/jb.87.6.1412-1422.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. COLWELL R. R., MANDEL M. BASE COMPOSITION OF DEOXYRIBONUCLEIC ACID OF MARINE AND NONMARINE VIBRIOS DEDUCED FROM BUOYANT-DENSITY MEASUREMENTS IN CESIUM CHLORIDE. J Bacteriol. 1964 Dec;88:1816–1817. doi: 10.1128/jb.88.6.1816-1817.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. CRAWFORD L. V. The physical characteristics of polyoma virus. II. The nucleic acid. Virology. 1963 Mar;19:279–282. doi: 10.1016/0042-6822(63)90065-5. [DOI] [PubMed] [Google Scholar]
  15. CREASER E. H., TAUSSIG A. The purification and chromatography of bacteriophages on anion-exchange cellulose. Virology. 1957 Oct;4(2):200–208. doi: 10.1016/0042-6822(57)90057-0. [DOI] [PubMed] [Google Scholar]
  16. CROTHERS D. M., KALLENBACH N. R., ZIMM B. H. THE MELTING TRANSITION OF LOW-MOLECULAR-WEIGHT DNA: THEORY AND EXPERIMENT. J Mol Biol. 1965 Apr;11:802–820. doi: 10.1016/s0022-2836(65)80037-7. [DOI] [PubMed] [Google Scholar]
  17. Citarella R. V., Colwell R. R. DNA base composition of Achromobacter liquefaciens (tulecke et al.). Can J Microbiol. 1966 Apr;12(2):418–420. doi: 10.1139/m66-058. [DOI] [PubMed] [Google Scholar]
  18. Colwell R. R., Adeyemo V. I., Kirtland H. H. Esterases and DNA base composition analysis of Vibrio cholerae and related vibrios. J Appl Bacteriol. 1968 Sep;31(3):323–335. doi: 10.1111/j.1365-2672.1968.tb00374.x. [DOI] [PubMed] [Google Scholar]
  19. Colwell R. R., Citarella R. V., Chen P. K. DNA base composition of Cytophaga marinoflava n. sp. determined by buoyant density measurements in cesium chloride. Can J Microbiol. 1966 Dec;12(6):1099–1103. doi: 10.1139/m66-150. [DOI] [PubMed] [Google Scholar]
  20. Colwell R. R., Citarella R. V., Ryman I. Deoxyribonucleic acid base composition and Adansonian analysis of heterotrophic aerobic pseudomonads. J Bacteriol. 1965 Oct;90(4):1148–1149. doi: 10.1128/jb.90.4.1148-1149.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. DELEY J. EFFECT OF MUTATION ON DNA-COMPOSITION OF SOME BACTERIA. Antonie Van Leeuwenhoek. 1964;30:281–288. doi: 10.1007/BF02046734. [DOI] [PubMed] [Google Scholar]
  22. DELEY J., FRIEDMAN S. DEOXYRIBONUCLEIC ACID HYBRIDS OF ACETIC ACID BACTERIA. J Bacteriol. 1964 Oct;88:937–945. doi: 10.1128/jb.88.4.937-945.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. DELEY J., SCHELL J. DEOXYRIBONUCLEIC ACID BASE COMPOSITION OF ACETIC ACID BACTERIA. J Gen Microbiol. 1963 Nov;33:243–253. doi: 10.1099/00221287-33-2-243. [DOI] [PubMed] [Google Scholar]
  24. DELEY J., VANMUYLEM J. SOME APPLICATIONS OF DEOXYRIBONUCLEIC ACID BASE COMPOSITION IN BACTERIAL TAXONOMY. Antonie Van Leeuwenhoek. 1963;29:344–358. doi: 10.1007/BF02046087. [DOI] [PubMed] [Google Scholar]
  25. DUNN D. B., SMITH J. D. The occurrence of 6-methylaminopurine in deoxyribonucleic acids. Biochem J. 1958 Apr;68(4):627–636. doi: 10.1042/bj0680627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. De Ley J., Bernaerts M., Rassel A., Guilmot J. Approach to an improved taxonomy of the genus Agrobacterium. J Gen Microbiol. 1966 Apr;43(1):7–17. doi: 10.1099/00221287-43-1-7. [DOI] [PubMed] [Google Scholar]
  27. De Ley J., Park I. W., Tijtgat R., Van Ermengem J. DNA homology and taxonomy of Pseudomonas and Xanthomonas. J Gen Microbiol. 1966 Jan;42(1):43–56. doi: 10.1099/00221287-42-1-43. [DOI] [PubMed] [Google Scholar]
  28. Edelman M., Swinton D., Schiff J. A., Epstein H. T., Zeldin B. Deoxyribonucleic Acid of the blue-green algae (cyanophyta). Bacteriol Rev. 1967 Dec;31(4):315–331. doi: 10.1128/br.31.4.315-331.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. FRIEDMAN S., DELEY J. "GENETIC SPECIES" CONCEPT IN XANTHOMONAS. J Bacteriol. 1965 Jan;89:95–100. doi: 10.1128/jb.89.1.95-100.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. FRONTALI C., HILL L. R., SILVESTRI L. G. THE BASE COMPOSITION OF DEOXYRIBONUCLEIC ACIDS OF STREPTOMYCES. J Gen Microbiol. 1965 Feb;38:243–250. doi: 10.1099/00221287-38-2-243. [DOI] [PubMed] [Google Scholar]
  31. GANDELMAN B., ZAMENHOF S., CHARGAFF E. The desoxypentose nucleic acids of three strains of Escherichia coli. Biochim Biophys Acta. 1952 Oct;9(4):399–401. doi: 10.1016/0006-3002(52)90183-2. [DOI] [PubMed] [Google Scholar]
  32. GAUSE G. G., LOSHKAREVA N. P., ZBARSKY I. B., GAUSE G. F. DEOXYRIBONUCLEIC ACID BASE COMPOSITION IN CERTAIN BACTERIA AND THEIR MUTANTS WITH IMPAIRED RESPIRATION. Nature. 1964 Aug 8;203:598–599. doi: 10.1038/203598a0. [DOI] [PubMed] [Google Scholar]
  33. GREEN M., PINA M. Biochemical studies on adenovirus multiplication. IV. Isolation, purification, and chemical analysis of adenovirus. Virology. 1963 May;20:199–207. doi: 10.1016/0042-6822(63)90157-0. [DOI] [PubMed] [Google Scholar]
  34. GREEN M. Studies on the biosynthesis of viral DNA. Cold Spring Harb Symp Quant Biol. 1962;27:219–235. doi: 10.1101/sqb.1962.027.001.022. [DOI] [PubMed] [Google Scholar]
  35. Gasser F., Mandel M. Deoxyribonucleic acid base composition of the genus Lactobacillus. J Bacteriol. 1968 Sep;96(3):580–588. doi: 10.1128/jb.96.3.580-588.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Gasser F., Sebald M. Composition en bases nucléiques des bactéries du genre Lactobacillus. Ann Inst Pasteur (Paris) 1966 Feb;110(2):261–275. [PubMed] [Google Scholar]
  37. Gause G. F., Dudnik Y. V., Laiko A. V., Netyksa E. M. Induction of mutants with altered DNA composition: effect of ultraviolet on Bacterium paracoli 5099. Science. 1967 Sep 8;157(3793):1196–1197. doi: 10.1126/science.157.3793.1196. [DOI] [PubMed] [Google Scholar]
  38. Green B. R., Gordon M. P. The satellite DNA's of some higher plants. Biochim Biophys Acta. 1967 Sep 26;145(2):378–390. doi: 10.1016/0005-2787(67)90056-1. [DOI] [PubMed] [Google Scholar]
  39. Hoyer B. H., McCullough N. B. Polynucleotide homologies of Brucella deoxyribonucleic acids. J Bacteriol. 1968 Feb;95(2):444–448. doi: 10.1128/jb.95.2.444-448.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. INMAN R. B., BALDWIN R. L. HELIX--RANDOM COIL TRANSITIONS IN DNA HOMOPOLYMER PAIRS. J Mol Biol. 1964 Apr;8:452–469. doi: 10.1016/s0022-2836(64)80003-6. [DOI] [PubMed] [Google Scholar]
  41. INMAN R. B. TRANSITIONS OF DNA HOMOPOLYMERS. J Mol Biol. 1964 Sep;9:624–637. doi: 10.1016/s0022-2836(64)80171-6. [DOI] [PubMed] [Google Scholar]
  42. IWAMURA T., MYERS J. Changes in the content and distribution of the nucleic acid bases in Chlorella during the life cycle. Arch Biochem Biophys. 1959 Oct;84:267–277. doi: 10.1016/0003-9861(59)90591-0. [DOI] [PubMed] [Google Scholar]
  43. Jackson J. F., Moriarty D. J., Nicholas D. J. Deoxyribonucleic acid base composition and taxonomy of thiobacilli and some nitrifying bacteria. J Gen Microbiol. 1968 Aug;53(1):53–60. doi: 10.1099/00221287-53-1-53. [DOI] [PubMed] [Google Scholar]
  44. KAISER A. D., HOGNESS D. S. The transformation of Escherichia coli with deoxyribonucleic acid isolated from bacteriophage lambda-dg. J Mol Biol. 1960 Dec;2:392–415. doi: 10.1016/s0022-2836(60)80050-2. [DOI] [PubMed] [Google Scholar]
  45. KIRBY K. S. The preparation of deoxyribonucleic acids by the p-aminosalicylate-phenol method. Biochim Biophys Acta. 1959 Nov;36:117–124. doi: 10.1016/0006-3002(59)90075-7. [DOI] [PubMed] [Google Scholar]
  46. KIT S. Species differences in animal deoxyribonucleic acid as revealed by equilibrium sedimentation in density gradients. Nature. 1962 Jan 20;193:274–275. doi: 10.1038/193274a0. [DOI] [PubMed] [Google Scholar]
  47. KNIGHT C. A. The chemical constitution of viruses. Adv Virus Res. 1954;2:153–182. doi: 10.1016/s0065-3527(08)60532-1. [DOI] [PubMed] [Google Scholar]
  48. Kingsbury D. T., Weiss E. Lack of deoxyribonucleic acid homology between species of the genus Chlamydia. J Bacteriol. 1968 Oct;96(4):1421–1423. doi: 10.1128/jb.96.4.1421-1423.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. LaMacchia E. H., Pelczar M. J., Jr Analysis of deoxyribonucleic acid of Neisseria caviae and other Neisseria. J Bacteriol. 1966 Feb;91(2):514–516. doi: 10.1128/jb.91.2.514-516.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Lee L. F., Boezi J. A. Characterization of bacteriophage gh-1 for Pseudomonas putida. J Bacteriol. 1966 Dec;92(6):1821–1827. doi: 10.1128/jb.92.6.1821-1827.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. MANDEL M., HONIGBERG B. M. ISOLATION AND CHARACTERIZATION OF DEOXYRIBONUCLEIC ACID OF TWO SPECIES OF TRICHOMONAS DONNE. J Protozool. 1964 Feb;11:114–116. doi: 10.1111/j.1550-7408.1964.tb01730.x. [DOI] [PubMed] [Google Scholar]
  52. MARMUR J., DOTY P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol. 1962 Jul;5:109–118. doi: 10.1016/s0022-2836(62)80066-7. [DOI] [PubMed] [Google Scholar]
  53. MARMUR J. Thermal denaturation of deoxyribosenucleic acid isolated from a thermophile. Biochim Biophys Acta. 1960 Feb 26;38:342–343. doi: 10.1016/0006-3002(60)91251-8. [DOI] [PubMed] [Google Scholar]
  54. MCDONALD W. C., FELKNER I. C., TURETSKY A., MATNEY T. S. SIMILARITY IN BASE COMPOSITIONS OF DEOXYRIBONUCLEATES FROM SEVERAL STRAINS OF BACILLUS CEREUS AND BACILLUS ANTHRACIS. J Bacteriol. 1963 May;85:1071–1073. doi: 10.1128/jb.85.5.1071-1073.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. MOROWITZ H. J., TOURTELLOTTE M. E., GUILD W. R., CASTRO E., WOESE C. The chemical composition and submicroscopic morphology of Mycoplasma gallisepticum, avian PPLO 5969. J Mol Biol. 1962 Feb;4:93–103. doi: 10.1016/s0022-2836(62)80041-2. [DOI] [PubMed] [Google Scholar]
  56. Mandel M. Deoxyribonucleic acid base composition in the genus Pseudomonas. J Gen Microbiol. 1966 May;43(2):273–292. doi: 10.1099/00221287-43-2-273. [DOI] [PubMed] [Google Scholar]
  57. Mandel M., Leadbetter E. R. Deoxyribonucleic acid base composition of myxobacteria. J Bacteriol. 1965 Dec;90(6):1795–1796. doi: 10.1128/jb.90.6.1795-1796.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. NEIMARK H. C., PENE J. J. CHARACTERIZATION OF PLEUROPNEUMONIA-LIKE ORGANISMS BY DEOXYRIBONUCLEIC ACID COMPOSITION. Proc Soc Exp Biol Med. 1965 Feb;118:517–519. doi: 10.3181/00379727-118-29893. [DOI] [PubMed] [Google Scholar]
  59. Piña M., Green M. Biochemical studies on adenovirus multiplication. IX. Chemical and base composition analysis of 28 human adenoviruses. Proc Natl Acad Sci U S A. 1965 Aug;54(2):547–551. doi: 10.1073/pnas.54.2.547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Prauser H., Falta R. Phagensensibilitat, Zellwand-Zusammensetzung und Taxonomie von Actinomyceten. Z Allg Mikrobiol. 1968;8(1):39–46. doi: 10.1002/jobm.3630080106. [DOI] [PubMed] [Google Scholar]
  61. RUSSELL W. C., CRAWFORD L. V. SOME CHARACTERISTICS OF THE DEOXYRIBONUCLEIC ACID FROM HERPES SIMPLEX VIRUS. Virology. 1963 Nov;21:353–361. doi: 10.1016/0042-6822(63)90196-x. [DOI] [PubMed] [Google Scholar]
  62. Riley M., Maling B. Physical and chemical characterization of two- and three-stranded adenine-thymine and adenine-uracil homopolymer complexes. J Mol Biol. 1966 Sep;20(2):359–389. doi: 10.1016/0022-2836(66)90069-6. [DOI] [PubMed] [Google Scholar]
  63. Rosenkranz H. S., Ellner P. D. Mutant of Bacterium paracoli 5099 with an altered DNA: identification as a Flavobacterium. Science. 1968 May 24;160(3830):893–894. doi: 10.1126/science.160.3830.893. [DOI] [PubMed] [Google Scholar]
  64. Rosypalová A., Bohácek J., Rosypal S. Deoxyribonucleic acid base composition and taxonomy of violet-pigmented cocci. Antonie Van Leeuwenhoek. 1966;32(1):105–112. doi: 10.1007/BF02097450. [DOI] [PubMed] [Google Scholar]
  65. SCHILDKRAUT C. L., MANDEL M., LEVISOHN S., SMITH-SONNEBORN J. E., MARMUR J. Deoxyribonucleic acid base composition and taxonomy of some protozoa. Nature. 1962 Nov 24;196:795–796. doi: 10.1038/196795a0. [DOI] [PubMed] [Google Scholar]
  66. SCHILDKRAUT C. L., MARMUR J., DOTY P. Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J Mol Biol. 1962 Jun;4:430–443. doi: 10.1016/s0022-2836(62)80100-4. [DOI] [PubMed] [Google Scholar]
  67. SCHILDKRAUT C. L., MARMUR J., DOTY P. The formation of hybrid DNA molecules and their use in studies of DNA homologies. J Mol Biol. 1961 Oct;3:595–617. doi: 10.1016/s0022-2836(61)80024-7. [DOI] [PubMed] [Google Scholar]
  68. SEBALD M., VERON M. TENEUR EN BASES DE L'ADN ET CLASSIFICATION DES VIBRIONS. Ann Inst Pasteur (Paris) 1963 Nov;105:897–910. [PubMed] [Google Scholar]
  69. SIGAL N., SENEZ J. C., LEGALL J., SEBALD M. BASE COMPOSITION OF THE DEOXYRIBONUCLEIC ACID OF SULFATE-REDUCING BACTERIA. J Bacteriol. 1963 Jun;85:1315–1318. doi: 10.1128/jb.85.6.1315-1318.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. SMITH J. D., WYATT G. R. The composition of some microbial deoxypentose nucleic acids. Biochem J. 1951 Jul;49(2):144–148. doi: 10.1042/bj0490144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. SMITH M. DEOXYRIBONUCLEIC ACIDS OF CRUSTACEA. J Mol Biol. 1964 Jul;9:17–23. doi: 10.1016/s0022-2836(64)80088-7. [DOI] [PubMed] [Google Scholar]
  72. SMITH M., QUAYLE D. B. DEOXYRIBONUCLEIC ACIDS OF MARINE MOLLUSCA. Nature. 1963 Nov 16;200:676–676. doi: 10.1038/200676a0. [DOI] [PubMed] [Google Scholar]
  73. Saunders G. F., Campbell L. L. Deoxyribonucleic Acid Base Composition of Desulfotomaculum nigrificans. J Bacteriol. 1966 Aug;92(2):515–515. doi: 10.1128/jb.92.2.515-515.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Saunders G. F., Campbell L. L., Postgate J. R. Base composition of deoxyribonucleic acid of sulfate-reducing bacteria deduced from buoyant density measurements in cesium chloride. J Bacteriol. 1964 May;87(5):1073–1078. doi: 10.1128/jb.87.5.1073-1078.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Schein A. H. The deoxyribonucleic acid of Micrococcus radiodurans. Biochem J. 1966 Dec;101(3):647–650. doi: 10.1042/bj1010647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Stenesh J., Roe B. A., Snyder T. L. Studies of the deoxyribonucleic acid from mesophilic and thermophilic bacteria. Biochim Biophys Acta. 1968 Jul 23;161(2):442–454. doi: 10.1016/0005-2787(68)90121-4. [DOI] [PubMed] [Google Scholar]
  77. TONOMURA B., MALKIN R., RABINOWITZ J. C. DEOXYRIBONUCLEIC ACID BASE COMPOSITION OF CLOSTRIDIAL SPECIES. J Bacteriol. 1965 May;89:1438–1439. doi: 10.1128/jb.89.5.1438-1439.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Tewfik E. M., Bradley S. G. Characterization of deoxyribonucleic acids from streptomycetes and nocardiae. J Bacteriol. 1967 Dec;94(6):1994–2000. doi: 10.1128/jb.94.6.1994-2000.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. VOLKIN E., ASTRACHAN L., COUNTRYMAN J. L. Metabolism of RNA phosphorus in Escherichia coli infected with bacteriophage T7. Virology. 1958 Oct;6(2):545–555. doi: 10.1016/0042-6822(58)90101-6. [DOI] [PubMed] [Google Scholar]
  80. WEED L. L. EFFECTS OF COPPER ON BACILLUS SUBTILIS. J Bacteriol. 1963 May;85:1003–1010. doi: 10.1128/jb.85.5.1003-1010.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. WEIL R. The denaturation and the renaturation of the DNA of polyoma virus. Proc Natl Acad Sci U S A. 1963 Apr;49:480–487. doi: 10.1073/pnas.49.4.480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. WYATT G. R., COHEN S. S. Nucleic acids of Rickettsiae. Nature. 1952 Nov 15;170(4333):846–847. doi: 10.1038/170846a0. [DOI] [PubMed] [Google Scholar]
  83. WYATT G. R., COHEN S. S. The bases of the nucleic acids of some bacterial and animal viruses: the occurrence of 5-hydroxymethylcytosine. Biochem J. 1953 Dec;55(5):774–782. doi: 10.1042/bj0550774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. WYATT G. R. The purine and pyrimidine composition of deoxypentose nucleic acids. Biochem J. 1951 May;48(5):584–590. doi: 10.1042/bj0480584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Wayne L. G., Gross W. M. Isolation of deoxyribonucleic acid from mycobacteria. J Bacteriol. 1968 Apr;95(4):1481–1482. doi: 10.1128/jb.95.4.1481-1482.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Welker N. E., Campbell L. L. Unrelatedness of Bacillus amyloliquefaciens and Bacillus subtilis. J Bacteriol. 1967 Oct;94(4):1124–1130. doi: 10.1128/jb.94.4.1124-1130.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Wells R. D., Ohtsuka E., Khorana H. G. Studies on polynucleotides. L. Synthetic deoxyribopolynucleotides as templates for the DNA polymerase of Escherichia coli: a new double-stranded DNA-like polymer containing repeating dinucleotide sequences. J Mol Biol. 1965 Nov;14(1):221–237. doi: 10.1016/s0022-2836(65)80242-x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES