Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1989 Sep;63(9):3586–3594. doi: 10.1128/jvi.63.9.3586-3594.1989

Transcription-inhibition and RNA-binding domains of influenza A virus matrix protein mapped with anti-idiotypic antibodies and synthetic peptides.

Z P Ye 1, N W Baylor 1, R R Wagner 1
PMCID: PMC250948  PMID: 2474671

Abstract

We have undertaken by biochemical and immunological experiments to locate the region of the matrix (M1) protein responsible for down-regulating endogenous transcription of A/WSN/33 influenza virus. A more refined map of the antigenic determinants of the M1 protein was obtained by binding of epitope-specific monoclonal antibodies (MAbs) to chemically cleaved fragments. Epitope 2-specific MAb 289/4 and MAb 7E5 reverse transcription inhibition by M1 protein and react with a 4-kilodalton cyanogen bromide fragment extending from amino acid Gly-129 to Gln-164. Anti-idiotype serum immunoglobulin G prepared in rabbits immunized with MAb 289/4 or MAb 7E5 mimicked the action of M1 protein by inhibiting transcription in vitro of influenza virus ribonucleoprotein cores. This transcription-inhibition activity of anti-MAb 7E5 immunoglobulin G and anti-MAb 289/4 immunoglobulin G could be reversed by MAb 7E5 and MAb 289/4 or could be removed by MAb 7E5-Sepharose affinity chromatography. Transcription of influenza virus ribonucleoprotein was inhibited by one of three synthetic oligopeptides, a nonodecapeptide SP3 with an amino acid sequence corresponding to Pro-90 through Thr-108 of the M1 protein. Of all the structural proteins of influenza virus, only NP and M1 showed strong affinity for binding viral RNA or other extraneous RNAs. The 4-kilodalton cyanogen bromide peptide (Gly-129 to Gln-164), exhibited marked affinity for viral RNA, the binding of which was blocked by epitope 2-specific MAb 7E5 but not by MAbs directed to three other epitopes. Viral RNA also bound strongly to the nonodecapeptide SP3 and rather less well to anti-idiotype anti-MAb 7E5; these latter viral RNA-binding reactions were only slightly blocked by preincubation of anti-MAb 7E5 or SP3 with MAb 7E5. These experiments suggest the presence of at least two RNA-binding sites, which also serve as transcription-inhibition sites, centered around amino acid sequences 80 through 109 (epitope 4?) and 129 through 164 (epitope 2) of the 252 amino acid M1 protein of A/WSN/33 influenza virus. A hydropathy plot of the M1 protein calculated by free-energy transfer suggests that the two hydrophilic transcription-inhibition RNA-binding domains are brought into close proximity by an alpha-helix-forming intervening hydrophobic domain.

Full text

PDF
3588

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen H., McCauley J., Waterfield M., Gething M. J. Influenza virus RNA segment 7 has the coding capacity for two polypeptides. Virology. 1980 Dec;107(2):548–551. doi: 10.1016/0042-6822(80)90324-4. [DOI] [PubMed] [Google Scholar]
  2. Barbosa M. S., Lowy D. R., Schiller J. T. Papillomavirus polypeptides E6 and E7 are zinc-binding proteins. J Virol. 1989 Mar;63(3):1404–1407. doi: 10.1128/jvi.63.3.1404-1407.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Both G. W., Air G. M. Nucleotide sequence coding for the N-terminal region of the matrix protein influenza virus. Eur J Biochem. 1979 May 15;96(2):363–372. doi: 10.1111/j.1432-1033.1979.tb13048.x. [DOI] [PubMed] [Google Scholar]
  4. Bowen B., Steinberg J., Laemmli U. K., Weintraub H. The detection of DNA-binding proteins by protein blotting. Nucleic Acids Res. 1980 Jan 11;8(1):1–20. doi: 10.1093/nar/8.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bucher D. J., Kharitonenkov I. G., Zakomirdin J. A., Grigoriev V. B., Klimenko S. M., Davis J. F. Incorporation of influenza virus M-protein into liposomes. J Virol. 1980 Nov;36(2):586–590. doi: 10.1128/jvi.36.2.586-590.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Engelman D. M., Steitz T. A., Goldman A. Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. Annu Rev Biophys Biophys Chem. 1986;15:321–353. doi: 10.1146/annurev.bb.15.060186.001541. [DOI] [PubMed] [Google Scholar]
  7. Gaulton G. N., Greene M. I. Idiotypic mimicry of biological receptors. Annu Rev Immunol. 1986;4:253–280. doi: 10.1146/annurev.iy.04.040186.001345. [DOI] [PubMed] [Google Scholar]
  8. Gregoriades A., Frangione B. Insertion of influenza M protein into the viral lipid bilayer and localization of site of insertion. J Virol. 1981 Oct;40(1):323–328. doi: 10.1128/jvi.40.1.323-328.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gregoriades A. Interaction of influenza M protein with viral lipid and phosphatidylcholine vesicles. J Virol. 1980 Nov;36(2):470–479. doi: 10.1128/jvi.36.2.470-479.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lamb R. A., Choppin P. W. The gene structure and replication of influenza virus. Annu Rev Biochem. 1983;52:467–506. doi: 10.1146/annurev.bi.52.070183.002343. [DOI] [PubMed] [Google Scholar]
  11. Lamb R. A., Zebedee S. L., Richardson C. D. Influenza virus M2 protein is an integral membrane protein expressed on the infected-cell surface. Cell. 1985 Mar;40(3):627–633. doi: 10.1016/0092-8674(85)90211-9. [DOI] [PubMed] [Google Scholar]
  12. Nisonoff A., Lamoyi E. Implications of the presence of an internal image of the antigen in anti-idiotypic antibodies: possible application to vaccine production. Clin Immunol Immunopathol. 1981 Dec;21(3):397–406. doi: 10.1016/0090-1229(81)90228-2. [DOI] [PubMed] [Google Scholar]
  13. Ogden J. R., Pal R., Wagner R. R. Mapping regions of the matrix protein of vesicular stomatitis virus which bind to ribonucleocapsids, liposomes, and monoclonal antibodies. J Virol. 1986 Jun;58(3):860–868. doi: 10.1128/jvi.58.3.860-868.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Patterson S., Gross J., Oxford J. S. The intracellular distribution of influenza virus matrix protein and nucleoprotein in infected cells and their relationship to haemagglutinin in the plasma membrane. J Gen Virol. 1988 Aug;69(Pt 8):1859–1872. doi: 10.1099/0022-1317-69-8-1859. [DOI] [PubMed] [Google Scholar]
  15. Sehnke P. C., Mason A. M., Hood S. J., Lister R. M., Johnson J. E. A "zinc-finger"-type binding domain in tobacco streak virus coat protein. Virology. 1989 Jan;168(1):48–56. doi: 10.1016/0042-6822(89)90402-9. [DOI] [PubMed] [Google Scholar]
  16. Shipley J. B., Pal R., Wagner R. R. Antigenicity, function, and conformation of synthetic oligopeptides corresponding to amino-terminal sequences of wild-type and mutant matrix proteins of vesicular stomatitis virus. J Virol. 1988 Aug;62(8):2569–2577. doi: 10.1128/jvi.62.8.2569-2577.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ye Z. P., Pal R., Fox J. W., Wagner R. R. Functional and antigenic domains of the matrix (M1) protein of influenza A virus. J Virol. 1987 Feb;61(2):239–246. doi: 10.1128/jvi.61.2.239-246.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Zebedee S. L., Lamb R. A. Growth restriction of influenza A virus by M2 protein antibody is genetically linked to the M1 protein. Proc Natl Acad Sci U S A. 1989 Feb;86(3):1061–1065. doi: 10.1073/pnas.86.3.1061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Zebedee S. L., Lamb R. A. Influenza A virus M2 protein: monoclonal antibody restriction of virus growth and detection of M2 in virions. J Virol. 1988 Aug;62(8):2762–2772. doi: 10.1128/jvi.62.8.2762-2772.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Zvonarjev A. Y., Ghendon Y. Z. Influence of membrane (M) protein on influenza A virus virion transcriptase activity in vitro and its susceptibility to rimantadine. J Virol. 1980 Feb;33(2):583–586. doi: 10.1128/jvi.33.2.583-586.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. van Wyke K. L., Yewdell J. W., Reck L. J., Murphy B. R. Antigenic characterization of influenza A virus matrix protein with monoclonal antibodies. J Virol. 1984 Jan;49(1):248–252. doi: 10.1128/jvi.49.1.248-252.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES