Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1972 Aug;111(2):557–565. doi: 10.1128/jb.111.2.557-565.1972

Minimal Requirements for Commitment to Sporulation in Bacillus megaterium

Richard A Greene a,1, Ralph A Slepecky a
PMCID: PMC251318  PMID: 4626503

Abstract

Commitment to sporulation was examined by means of both endotrophic sporulation and rejuvenation experiments. In both cases, a point of commitment to the completion of sporulation occurred at stage II. With 2 × 108 cells/ml, the process by which commitment occurred required 0.5 mm Mg2+, 10.0 mm phosphate, and an energy source (minimum of 5.0 mm acetate). For completion of sporulation and formation of normal, heat-resistant refractile spores, 0.3 mm Ca2+ was required. Except for this Ca2+ requirement, the completion of sporulation after commitment was independent of the nature of the surrounding medium. Some aspects of the utilization of these required substances were examined.

Full text

PDF
558

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARONSON A. I., ROSASDELVALLE M. RNA AND PROTEIN SYNTHESIS REQUIRED FOR BACTERIAL SPORE FORMATION. Biochim Biophys Acta. 1964 Jun 22;87:267–276. doi: 10.1016/0926-6550(64)90222-1. [DOI] [PubMed] [Google Scholar]
  2. Anderson R. E., Synder F. Quantitative collection of 14CO2 in the presence of labeled short-chain acids. Anal Biochem. 1969 Feb;27(2):311–314. doi: 10.1016/0003-2697(69)90038-4. [DOI] [PubMed] [Google Scholar]
  3. BLACK S. H., GERHARDT P. "Endotrophic" sporulation. Ann N Y Acad Sci. 1963 Jan 21;102:755–762. doi: 10.1111/j.1749-6632.1963.tb13674.x. [DOI] [PubMed] [Google Scholar]
  4. BLACK S. H., HASHIMOTO T., GERHARDT P. Calcium reversal of the heat susceptibility and dipicolinate deficiency of spores formed "endotrophically" in water. Can J Microbiol. 1960 Apr;6:213–224. doi: 10.1139/m60-023. [DOI] [PubMed] [Google Scholar]
  5. Balassa G. Synthèse et fonction des ARN messagers au cours de la sporulation de Bacillus subtilis. Ann Inst Pasteur (Paris) 1966 Feb;110(2):175–191. [PubMed] [Google Scholar]
  6. Buono F., Testa R., Lundgren D. G. Physiology of growth and sporulation in Bacillus cereus. I. Effect of glutamic and other amino acids. J Bacteriol. 1966 Jun;91(6):2291–2299. doi: 10.1128/jb.91.6.2291-2299.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DEL VALLE M. R., ARONSON A. I. Evidence for the synthesis of stable informational RNA required for bacterial spore formation. Biochem Biophys Res Commun. 1962 Nov 27;9:421–425. doi: 10.1016/0006-291x(62)90027-x. [DOI] [PubMed] [Google Scholar]
  8. FOSTER J. W. Morphogenesis in bacteria: some aspects of spore formation. Q Rev Biol. 1956 Jun;31(2):102–118. doi: 10.1086/401259. [DOI] [PubMed] [Google Scholar]
  9. FOSTER J. W., PERRY J. J. Intracellular events occurring during endotrophic sporulation in Bacillus mycoides. J Bacteriol. 1954 Mar;67(3):295–302. doi: 10.1128/jb.67.3.295-302.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Foerster H. F., Foster J. W. Endotrophic calcium, strontium, and barium spores of Bacillus megaterium and Bacillus cereus. J Bacteriol. 1966 Mar;91(3):1333–1345. doi: 10.1128/jb.91.3.1333-1345.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Freer J. H., Levinson H. S. Fine structure of Bacillus megaterium during microcycle sporogenesis. J Bacteriol. 1967 Aug;94(2):441–457. doi: 10.1128/jb.94.2.441-457.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Freese E., Klofat W., Galliers E. Commitment to sporulation and induction of glucose-phosphoenolpyruvate-transferase. Biochim Biophys Acta. 1970 Nov 24;222(2):265–289. doi: 10.1016/0304-4165(70)90115-7. [DOI] [PubMed] [Google Scholar]
  13. Fréhel C., Ryter A. Réversibilité de la sporulation chez B. subtilis. Ann Inst Pasteur (Paris) 1969 Sep;117(3):297–311. [PubMed] [Google Scholar]
  14. HARDWICK W. A., FOSTER J. W. On the nature of sporogenesis in some aerobic bacteria. J Gen Physiol. 1952 Jul;35(6):907–927. doi: 10.1085/jgp.35.6.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. HASHIMOTO T., BLACK S. H., GERHARDT P. Development of fine structure, thermostability, and dipicolinate during sporogenesis in a bacillus. Can J Microbiol. 1960 Apr;6:203–212. doi: 10.1139/m60-022. [DOI] [PubMed] [Google Scholar]
  16. Hitchins A. D., Greene R. A., Slepecky R. A. Effect of carbon source on size and associated properties of Bacillus megaterium spores. J Bacteriol. 1972 Apr;110(1):392–401. doi: 10.1128/jb.110.1.392-401.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Holmes P. K., Levinson H. S. Metabolic requirements for microcycle sporogenesis of Bacillus megaterium. J Bacteriol. 1967 Aug;94(2):434–440. doi: 10.1128/jb.94.2.434-440.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Klofat W., Picciolo G., Chappelle E. W., Freese E. Production of adenosine triphosphate in normal cells and sporulation mutants of Bacillus subtilis. J Biol Chem. 1969 Jun 25;244(12):3270–3276. [PubMed] [Google Scholar]
  19. Knaysi G. Process of Sporulation in Strain of Bacillus cereus. J Bacteriol. 1946 Feb;51(2):187–197. [PMC free article] [PubMed] [Google Scholar]
  20. Lee K. Y., Weinberg E. D. Sporulation of Bacillus megaterium: roles of metal ions. Microbios. 1971 Apr;3(12):215–224. [PubMed] [Google Scholar]
  21. Lusk J. E., Williams R. J., Kennedy E. P. Magnesium and the growth of Escherichia coli. J Biol Chem. 1968 May 25;243(10):2618–2624. [PubMed] [Google Scholar]
  22. MacKechnie I., Hanson R. S. Microcycle sporogenesis of Bacillus cereus in a chemically defined medium. J Bacteriol. 1968 Feb;95(2):355–359. doi: 10.1128/jb.95.2.355-359.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. MacKechnie I. Macromolecular synthesis during microcycle sporogenesis of Bacillus cereus T. J Bacteriol. 1970 Jan;101(1):24–34. doi: 10.1128/jb.101.1.24-34.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. PERRY J. J., FOSTER J. W. Non-involvement of lysis during sporulation of Bacillus mycoides in distilled water. J Gen Physiol. 1954 Jan 20;37(3):401–409. doi: 10.1085/jgp.37.3.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. PERRY J. J., FOSTER J. W. Studies on the biosynthesis of dipicolinic acid in spores of Bacillus cereus var. mycoides. J Bacteriol. 1955 Mar;69(3):337–346. doi: 10.1128/jb.69.3.337-346.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. POWELL J. F., HUNTER J. R. Sporulation in distilled water. J Gen Physiol. 1953 May;36(5):601–606. doi: 10.1085/jgp.36.5.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ramaley R. F., Burden L. Replacement sporulation of Bacillus subtilis 168 in a chemically defined medium. J Bacteriol. 1970 Jan;101(1):1–8. doi: 10.1128/jb.101.1.1-8.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. SLEPECKY R., FOSTER J. W. Alterations in metal content of spores of Bacillus megaterium and the effect on some spore properties. J Bacteriol. 1959 Jul;78(1):117–123. doi: 10.1128/jb.78.1.117-123.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Smith J. W., Crosby W. H., Maier S. Synchronous sporulation in Bacillus megaterium and some aspects of commitment to sporulation. Appl Microbiol. 1968 Jun;16(6):963–964. doi: 10.1128/am.16.6.963-964.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sterlini J. M., Mandelstam J. Commitment to sporulation in Bacillus subtilis and its relationship to development of actinomycin resistance. Biochem J. 1969 Jun;113(1):29–37. doi: 10.1042/bj1130029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sugae K., Freese E. Requirement for Acetate and Glycine (or Serine) for Sporulation Without Growth of Bacillus subtilis. J Bacteriol. 1970 Dec;104(3):1074–1085. doi: 10.1128/jb.104.3.1074-1085.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Vinter V., Slepecky R. A. Direct Transition of Outgrowing Bacterial Spores to New Sporangia Without Intermediate Cell Division. J Bacteriol. 1965 Sep;90(3):803–807. doi: 10.1128/jb.90.3.803-807.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. YOUNG I. E., JAMES P. C. Chemical and morphological studies of bacterial spore formation. IV. The development of spore refractility. J Cell Biol. 1962 Jan;12:115–133. doi: 10.1083/jcb.12.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES