Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1972 Sep;111(3):778–783. doi: 10.1128/jb.111.3.778-783.1972

Methionine Adenosyltransferase and Ethionine Resistance in Saccharomyces cerevisiae

Janet E Mertz 1, K D Spence 1
PMCID: PMC251352  PMID: 4559828

Abstract

The methionine adenosyltransferase is repressed in Saccharomyces cerevisiae during growth in the presence of excess methionine. The relationship of this repression to the level of intracellular S-adenosylmethionine is discussed. In conjunction with these studies, an ethionine-resistant mutant has been investigated which has a low level of methionine adenosyltransferase under all conditions tested. The mechanism of ethionine resistance in the latter strain apparently depends on its inability to form large quantities of intracellular S-adenosylethionine. With respect to the methionine adenosyltransferase, there is no apparent interaction between ethionine-resistant and ethionine-sensitive alleles when both are present in the heterozygous diploid.

Full text

PDF
779

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CANTONI G. L., DURELL J. Activation of methionine for transmethylation. II. The methionine-activating enzyme; studies on the mechanism of the reaction. J Biol Chem. 1957 Apr;225(2):1033–1048. [PubMed] [Google Scholar]
  2. CATONI G. L. S-Adenosylmethionine; a new intermediate formed enzymatically from L-methionine and adenosinetriphosphate. J Biol Chem. 1953 Sep;204(1):403–416. [PubMed] [Google Scholar]
  3. Cherest H., Eichler F., Robichon-Szulmajster H. Genetic and regulatory aspects of methionine biosynthesis in Saccharomyces cerevisiae. J Bacteriol. 1969 Jan;97(1):328–336. doi: 10.1128/jb.97.1.328-336.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cherest H., Talbot G., Robichon-Szulmajster H. Methionine biosynthesis from the 4-carbon skeleton of ethionine in Saccharomyces cerevisiae. Biochem Biophys Res Commun. 1968 Aug 21;32(4):723–730. doi: 10.1016/0006-291x(68)90299-4. [DOI] [PubMed] [Google Scholar]
  5. Cherest H., Talbot G., Robichon-Szulmajster H. Role of homocysteine synthetase in an alternate route for methionine biosynthesis in Saccharomyces cerevisiae. J Bacteriol. 1970 May;102(2):448–461. doi: 10.1128/jb.102.2.448-461.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cox R., Smith R. C. Inhibition of S-adenosylmethionine formation by analogues of methionine. Arch Biochem Biophys. 1969 Feb;129(2):615–619. doi: 10.1016/0003-9861(69)90222-7. [DOI] [PubMed] [Google Scholar]
  7. GAWEL L. J., TURNER J. R., PARKS L. W. Accumulation of S-adenosylmethionine by microorganisms. J Bacteriol. 1962 Mar;83:497–499. doi: 10.1128/jb.83.3.497-499.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Greene R. C. Kinetic studies of the mechanism of S-adenosylmethionine synthetase from yeast. Biochemistry. 1969 Jun;8(6):2255–2265. doi: 10.1021/bi00834a004. [DOI] [PubMed] [Google Scholar]
  9. Greene R. C., Su C. H., Holloway C. T. S-Adenosylmethionine synthetase deficient mutants of Escherichia coli K-12 with impaired control of methionine biosynthesis. Biochem Biophys Res Commun. 1970 Mar 27;38(6):1120–1126. doi: 10.1016/0006-291x(70)90355-4. [DOI] [PubMed] [Google Scholar]
  10. Groves W. E., Davis F. C., Jr, Sells B. H. Spectrophotometric determination of microgram quantities of protein without nucleic acid interference. Anal Biochem. 1968 Feb;22(2):195–210. doi: 10.1016/0003-2697(68)90307-2. [DOI] [PubMed] [Google Scholar]
  11. Holloway C. T., Greene R. C., Su C. H. Regulation of S-adenosylmethionine synthetase in Escherichia coli. J Bacteriol. 1970 Nov;104(2):734–747. doi: 10.1128/jb.104.2.734-747.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. JOHNSTON J. R., MORTIMER R. K. Use of snail digestive juice in isolation of yeast spore tetrads. J Bacteriol. 1959 Aug;78:292–292. doi: 10.1128/jb.78.2.292-292.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kappy M. S., Metzenberg R. L. Studies on the basis of ethionine-resistance in Neurospora. Biochim Biophys Acta. 1965 Oct 18;107(3):425–433. doi: 10.1016/0304-4165(65)90186-8. [DOI] [PubMed] [Google Scholar]
  14. MUDD S. H. Activation of methionine for transmethylation. VI. Enzyme-bound tripolyphosphate as an intermediate in the reaction catalyzed by the methionine-activating enzyme of Baker's yeast. J Biol Chem. 1963 Jun;238:2156–2163. [PubMed] [Google Scholar]
  15. MUDD S. H., CANTONI G. L. Activation of methionine for transmethylation. III. The methionine-activating enzyme of Bakers' yeast. J Biol Chem. 1958 Mar;231(1):481–492. [PubMed] [Google Scholar]
  16. Maw G. A. Incorporation and distribution of ethionine-sulfur in the protein of ethionine-sensitive and ethionine-resistant yeasts. Arch Biochem Biophys. 1966 Aug;115(2):291–301. doi: 10.1016/0003-9861(66)90277-3. [DOI] [PubMed] [Google Scholar]
  17. PARKS L. W. S-Adenosylethionine and ethionine inhibition. J Biol Chem. 1958 May;232(1):169–176. [PubMed] [Google Scholar]
  18. PIGG C. J., SORSOLI W. A., PARKS L. W. INDUCTION OF THE METHIONINE-ACTIVATING ENZYME IN SACCHAROMYCES CEREVISIAE. J Bacteriol. 1964 Apr;87:920–923. doi: 10.1128/jb.87.4.920-923.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pan F., Tarver H. Comparative studies on methionine, selenomethionine, and their ethyl analogues as substrates for methionine adenosyltransferase from rat liver. Arch Biochem Biophys. 1967 Mar;119(1):429–434. doi: 10.1016/0003-9861(67)90474-2. [DOI] [PubMed] [Google Scholar]
  20. SCHLENK F., DEPALMA R. E. The formation of S-adenosylmethionine in yeast. J Biol Chem. 1957 Dec;229(2):1037–1050. [PubMed] [Google Scholar]
  21. SORSOLI W. A., SPENCE K. D., PARKS L. W. AMINO ACID ACCUMULATION IN ETHIONINE-RESISTANT SACCHAROMYCES CEREVISIAE. J Bacteriol. 1964 Jul;88:20–24. doi: 10.1128/jb.88.1.20-24.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. STEKOL J. A. BIOCHEMICAL BASIS FOR ETHIONINE EFFECTS ON TISSUES. Adv Enzymol Relat Areas Mol Biol. 1963;25:369–393. doi: 10.1002/9780470122709.ch7. [DOI] [PubMed] [Google Scholar]
  23. Schlenk F., Zydek C. R., Ehninger D. J., Dainko J. L. The production of S-adenosyl-L-methionine and S-adenosyl-L-ethionine by yeast. Enzymologia. 1965 Nov 6;29(3):283–298. [PubMed] [Google Scholar]
  24. Shapiro S. K., Ehninger D. J. Methods for the analysis and preparation of adenosylmethionine and adenosylhomocysteine. Anal Biochem. 1966 May;15(2):323–333. doi: 10.1016/0003-2697(66)90038-8. [DOI] [PubMed] [Google Scholar]
  25. Spence K. D. Mutation of Saccharomyces cerevisiae preventing uptake of S-adenosylmethionine. J Bacteriol. 1971 May;106(2):325–330. doi: 10.1128/jb.106.2.325-330.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Spence K. D., Parks L. W., Shapiro S. K. Dominant mutation for ethionine resistance in Saccharomyces cerevisae. J Bacteriol. 1967 Nov;94(5):1531–1537. doi: 10.1128/jb.94.5.1531-1537.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Surdin Y., Sly W., Sire J., Bordes A. M., Robichon-Szulmajster H. Propriétés et contrôle génétique du système d'accumulation des acides aminés chez Saccharomyces cerevisiae. Biochim Biophys Acta. 1965 Oct 18;107(3):546–566. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES