Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1972 Oct;112(1):345–355. doi: 10.1128/jb.112.1.345-355.1972

Differential Amino Acid Requirements for Sporulation in Bacillus subtilis

Jeffrey L Doering a, Kenneth F Bott a,1
PMCID: PMC251417  PMID: 4627926

Abstract

The amino acid requirements for sporulation were studied by use of auxotrophic mutants of Bacillus subtilis 168. Cells were grown to T0 in medium containing the test amino acid and were then transferred to a minimal medium lacking that amino acid. Omission of leucine caused no reduction in sporulation. Omission of methionine, lysine, and phenylalanine appeared to cause reduced levels of sporulation, and sporulation was completely inhibited when isoleucine, tryptophan, and threonine were omitted. The amino acids in this third class showed a sequence of requirements, with tryptophan required earlier than isoleucine, which in turn was required earlier in the sporulation process than threonine. Isoleucine omission did not affect the early sporulation functions of extracellular protease formation or septum formation, but prevented the increased levels of protein synthesis and oxygen consumption that normally accompany early sporulation stages. Isoleucine did not appear to be metabolized to other compounds in significant amounts during sporulation. The role of isoleucine in the sporulation process remains unclear.

Full text

PDF
345

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aronson A. I., Henderson E., Tincher A. Participation of the lysine pathway in dipicolinic acid synthesis in Bacillus cereus T. Biochem Biophys Res Commun. 1967 Feb 21;26(4):454–460. doi: 10.1016/0006-291x(67)90568-2. [DOI] [PubMed] [Google Scholar]
  2. Bach M. L., Gilvarg C. Biosynthesis of dipicolinic acid in sporulating Bacillus megaterium. J Biol Chem. 1966 Oct 10;241(19):4563–4564. [PubMed] [Google Scholar]
  3. Buono F., Testa R., Lundgren D. G. Physiology of growth and sporulation in Bacillus cereus. I. Effect of glutamic and other amino acids. J Bacteriol. 1966 Jun;91(6):2291–2299. doi: 10.1128/jb.91.6.2291-2299.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Deutscher M. P., Kornberg A. Biochemical studies of bacterial sporulation and germination. 8. Patterns of enzyme development during growth and sporulation of Baccillus subtilis. J Biol Chem. 1968 Sep 25;243(18):4653–4660. [PubMed] [Google Scholar]
  5. FOSTER J. W., PERRY J. J. Intracellular events occurring during endotrophic sporulation in Bacillus mycoides. J Bacteriol. 1954 Mar;67(3):295–302. doi: 10.1128/jb.67.3.295-302.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hanson R. S., Peterson J. A., Yousten A. A. Unique biochemical events in bacterial sporulation. Annu Rev Microbiol. 1970;24:53–90. doi: 10.1146/annurev.mi.24.100170.000413. [DOI] [PubMed] [Google Scholar]
  7. JICINSKA E. SPORULATION OF AUXOTROPHIC MUTANTS OF BACILLUS SUBTILIS IN SUBOPTIMAL CONCENTRATIONS OF ESSENTIAL AMINO ACIDS. Folia Microbiol (Praha) 1964 Mar;18:73–77. doi: 10.1007/BF02868787. [DOI] [PubMed] [Google Scholar]
  8. Kane J. F., Jensen R. A. Metabolic interlock. The influence of histidine on tryptophan biosynthesis in Bacillus subtilis. J Biol Chem. 1970 May 10;245(9):2384–2390. [PubMed] [Google Scholar]
  9. Kane J. F., Stenmark S. L., Calhoun D. H., Jensen R. A. Metabolic interlock. The role of the subordinate type of enzyme in the regulation of a complex pathway. J Biol Chem. 1971 Jul 10;246(13):4308–4316. [PubMed] [Google Scholar]
  10. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  11. MAJUMDAR S. K., BOSE S. K. Utilization of amino acids by Bacillus subtilis during growth and antibiotic production. Biochim Biophys Acta. 1958 Sep;29(3):509–513. doi: 10.1016/0006-3002(58)90006-4. [DOI] [PubMed] [Google Scholar]
  12. MONRO R. E. Protein turnover and the formation of protein inclusions during sporulation of Bacillus thuringiensis. Biochem J. 1961 Nov;81:225–232. doi: 10.1042/bj0810225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. RYTER A. ETUDE MORPHOLOGIQUE DE LA SPORULATION DE BACILLUS SUBTILIS. Ann Inst Pasteur (Paris) 1965 Jan;108:40–60. [PubMed] [Google Scholar]
  14. Ramaley R. F., Burden L. Replacement sporulation of Bacillus subtilis 168 in a chemically defined medium. J Bacteriol. 1970 Jan;101(1):1–8. doi: 10.1128/jb.101.1.1-8.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Schaeffer P. Sporulation and the production of antibiotics, exoenzymes, and exotonins. Bacteriol Rev. 1969 Mar;33(1):48–71. doi: 10.1128/br.33.1.48-71.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sterlini J. M., Mandelstam J. Commitment to sporulation in Bacillus subtilis and its relationship to development of actinomycin resistance. Biochem J. 1969 Jun;113(1):29–37. doi: 10.1042/bj1130029. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES