Abstract
When the arginyl-transfer ribonucleic acid (tRNA) species isolated from unshaken and from shaken cultures of Neurospora were compared by co-chromatography, a marked change in the relative abundance of the two main tRNAarg species was found. The two arginine tRNA species had different codon responses in ribosome binding assays. The tRNAarg eluting first (prevalent in shaken cultures) bound strongly to polyadenylic-guanylic acid [poly(A,G)] and to a lesser extent to polycytidylic-guanylic-adenylic acid [poly(C,G,A)]. The second tRNAarg species (prevalent in unshaken cultures) bound to poly(C,G,A) but not to poly(A, G). The possible significance of these observations is briefly discussed. Several modifications that improve the yield of tRNA from Neurospora were introduced in a standard isolation procedure.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson W. F. The effect of tRNA concentration on the rate of protein synthesis. Proc Natl Acad Sci U S A. 1969 Feb;62(2):566–573. doi: 10.1073/pnas.62.2.566. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arceneaux J. L., Sueoka N. Two species of Bacillus subtilis tyrosine transfer ribonucleic acid. Biological properties and alteration in their relative amounts during growth. J Biol Chem. 1969 Nov 10;244(21):5959–5966. [PubMed] [Google Scholar]
- BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doi R. H., Kaneko I., Igarashi R. T. Pattern of valine transfer ribonucleic acid of Bacillus subtilis under different growth conditions. J Biol Chem. 1968 Mar 10;243(5):945–951. [PubMed] [Google Scholar]
- Gefter M. L., Russell R. L. Role modifications in tyrosine transfer RNA: a modified base affecting ribosome binding. J Mol Biol. 1969 Jan 14;39(1):145–157. doi: 10.1016/0022-2836(69)90339-8. [DOI] [PubMed] [Google Scholar]
- Gillam I., Millward S., Blew D., von Tigerstrom M., Wimmer E., Tener G. M. The separation of soluble ribonucleic acids on benzoylated diethylaminoethylcellulose. Biochemistry. 1967 Oct;6(10):3043–3056. doi: 10.1021/bi00862a011. [DOI] [PubMed] [Google Scholar]
- Gross H. J., Raab C. In vivo synthesis of tRNA Tyr 1 and tRNA Tyr 2 : differences in "early" and "late log" E. coli MRE 600. Biochem Biophys Res Commun. 1972 Mar 24;46(6):2006–2011. doi: 10.1016/0006-291x(72)90751-6. [DOI] [PubMed] [Google Scholar]
- Kwan C. N., Apirion D., Schlessinger D. Anaerobiosis-induced changes in an isoleucyl transfer ribonucleic acid and the 50S ribosomes of Escherichia coli. Biochemistry. 1968 Jan;7(1):427–433. doi: 10.1021/bi00841a055. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lazzarini R. A., Santangelo E. Medium-dependent alteration of lysine transfer ribonucleic acid in sporulating Bacillus subtilis cells. J Bacteriol. 1967 Jul;94(1):125–130. doi: 10.1128/jb.94.1.125-130.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lindahl T., Adams A., Fresco J. R. Renaturation of transfer ribonucleic acids through site binding of magnesium. Proc Natl Acad Sci U S A. 1966 Apr;55(4):941–948. doi: 10.1073/pnas.55.4.941. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NIRENBERG M., LEDER P. RNA CODEWORDS AND PROTEIN SYNTHESIS. THE EFFECT OF TRINUCLEOTIDES UPON THE BINDING OF SRNA TO RIBOSOMES. Science. 1964 Sep 25;145(3639):1399–1407. doi: 10.1126/science.145.3639.1399. [DOI] [PubMed] [Google Scholar]
- Nazario M., Kinsey J. A., Ahmad M. Neurospora mutant deficient in tryptophanyl-transfer ribonucleic acid synthetase activity. J Bacteriol. 1971 Jan;105(1):121–126. doi: 10.1128/jb.105.1.121-126.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nazario M. The accumulation of argininosuccinate in Neurospora crassa. I. Elevated ornithine carbamoyl transferase with high concentrations of arginine. Biochim Biophys Acta. 1967 Aug 22;145(1):138–145. doi: 10.1016/0005-2787(67)90662-4. [DOI] [PubMed] [Google Scholar]
- Nazario M. The accumulation of argininosuccinate in Neurospora crassa. II. Inhibition of arginyl-tRNA synthesis by argininosuccinate. Biochim Biophys Acta. 1967 Aug 22;145(1):146–152. doi: 10.1016/0005-2787(67)90663-6. [DOI] [PubMed] [Google Scholar]
- Shearn A., Horowitz N. H. A study of transfer ribonucleic acid in Neurospora. I. The attachment of amino acids and amino acid analogs. Biochemistry. 1969 Jan;8(1):295–303. doi: 10.1021/bi00829a042. [DOI] [PubMed] [Google Scholar]
- Stanley W. M., Jr, Bock R. M. Isolation and physical properties of the ribosomal ribonucleic acid of Escherichia coli. Biochemistry. 1965 Jul;4(7):1302–1311. doi: 10.1021/bi00883a014. [DOI] [PubMed] [Google Scholar]
- Stern R., Gonano F., Fleissner E., Littauer U. Z. Coding properties of methyl-deficient phenylalanyl transfer ribonucleic acid from Escherichia coli. Biochemistry. 1970 Jan 6;9(1):10–18. doi: 10.1021/bi00803a002. [DOI] [PubMed] [Google Scholar]
- Sueoka N., Kano-Sueoka T. Transfer RNA and cell differentiation. Prog Nucleic Acid Res Mol Biol. 1970;10:23–55. doi: 10.1016/s0079-6603(08)60560-7. [DOI] [PubMed] [Google Scholar]
- Söll D. Enzymatic modification of transfer RNA. Science. 1971 Jul 23;173(3994):293–299. doi: 10.1126/science.173.3994.293. [DOI] [PubMed] [Google Scholar]
- Vold B. S. Comparison of lysyl-transfer ribonucleic acid species from vegetative cells and spores of Bacillus subtilis by methylated albumin-kieselguhr and reversed-phase chromatography. J Bacteriol. 1970 Jun;102(3):711–715. doi: 10.1128/jb.102.3.711-715.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiss J. F., Kelmers A. D. A new chromatographic system for increased resolution of transfer ribonucleic acids. Biochemistry. 1967 Aug;6(8):2507–2513. doi: 10.1021/bi00860a030. [DOI] [PubMed] [Google Scholar]
- Wettstein F. O., Stent G. S. Physiologically induced changes in the property of phenylalanine tRNA in Escherichia coli. J Mol Biol. 1968 Nov 28;38(1):25–40. doi: 10.1016/0022-2836(68)90126-5. [DOI] [PubMed] [Google Scholar]
- Yang W. K., Novelli G. D. Multiple isoaccepting transfer RNA's in a muouse plasma cell tumor. Proc Natl Acad Sci U S A. 1968 Jan;59(1):208–215. doi: 10.1073/pnas.59.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]