Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1973 Jan;113(1):88–95. doi: 10.1128/jb.113.1.88-95.1973

Genetic Analysis of Repair of Ultraviolet Damage by Competent and Noncompetent Cells of Bacillus subtilis

Charles T Hadden 1, Daniel Billen 2
PMCID: PMC251606  PMID: 4630515

Abstract

The repair of ultraviolet (UV) damage in Bacillus subtilis W23T has been studied by transformation with deoxyribonucleic acid (DNA) extracted from irradiated cells before and after repair. The extent of repair of genetic markers by donor cells after low or moderate doses of UV was found to be related only to the initial degree of inactivation. After a very high dose, further inactivation occurred, also in proportion to initial damage. In addition, the competent recipient cells were shown to repair approximately 75% of the damage in transforming DNA. The sensitivities of markers irradiated either in vivo or in vitro appeared to be related to map position, the more proximal markers showing a greater resistance to UV inactivation.

Full text

PDF
95

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Achey P., Billen D. Saturation of dark repair synthesis: accumulation of strand breaks. Biophys J. 1969 May;9(5):647–653. doi: 10.1016/S0006-3495(69)86409-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anagnostopoulos C., Spizizen J. REQUIREMENTS FOR TRANSFORMATION IN BACILLUS SUBTILIS. J Bacteriol. 1961 May;81(5):741–746. doi: 10.1128/jb.81.5.741-746.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beattie K. L., Setlow J. K. Repair of ultraviolet-irradiated transforming deoxyribonucleic acid in Haemophilus influenzae. J Bacteriol. 1970 Mar;101(3):808–812. doi: 10.1128/jb.101.3.808-812.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Billen D., Carreira L. B., Hadden C. T., Silverstein S. J. Evidence suggestive of compartmentalization of deoxyribonucleic acid-synthesizing systems in freeze-treated Bacillus subtilis. J Bacteriol. 1971 Dec;108(3):1250–1256. doi: 10.1128/jb.108.3.1250-1256.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Billen D., Hellerman G., Carreira L. Gene frequency analysis of chromosomal initiation sites in Bacillus subtilis after ultraviolet light or x-ray exposure. J Bacteriol. 1972 Jan;109(1):379–384. doi: 10.1128/jb.109.1.379-384.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Billen D. Replication of the bacterial chromosome: location of new initiation sites after irradiation. J Bacteriol. 1969 Mar;97(3):1169–1175. doi: 10.1128/jb.97.3.1169-1175.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bresler S. E., Kalinin V. L., Perumov D. A. Inactivation and mutagenesis on isolated DNA. I. Theory of inactivation of transforming DNA. Mutat Res. 1967 Jul-Aug;4(4):389–398. doi: 10.1016/0027-5107(67)90001-2. [DOI] [PubMed] [Google Scholar]
  8. Bresler S. E., Kalinin V. L., Perumov D. A. Inactivation and mutagenesis on isolated DNA. Iv. Possibility of integration of lethal damage into the chromosome of Bacillus subtillis during transformation. Mutat Res. 1968 May-Jun;5(3):329–341. doi: 10.1016/0027-5107(68)90003-1. [DOI] [PubMed] [Google Scholar]
  9. Bresler S. E., Kalinin V. L., Perumov D. A. Inactivation and mutagenesis on isolated DNA. V. The importance of repairing enzymes for the inactivation of transforming DNA in vitro. Mutat Res. 1970 Jan;9(1):1–19. doi: 10.1016/0027-5107(70)90066-7. [DOI] [PubMed] [Google Scholar]
  10. Bron S., Venema G. Ultraviolet inactivation and excision-repair in Bacillus subtilis. II. Differential inactivation and differential repair of transforming markers. Mutat Res. 1972 May;15(1):11–22. doi: 10.1016/0027-5107(72)90087-5. [DOI] [PubMed] [Google Scholar]
  11. Day R. S., 3rd, Deering R. A. Recovery of colony-forming ability and genetic marker activity by UV-damaged Hemophilus Influenzae. Biophys J. 1968 Oct;8(10):1119–1130. doi: 10.1016/S0006-3495(68)86543-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dooley D. C., Hadden C. T., Nester E. W. Macromolecular synthesis in Bacillus subtilis during development of the competent state. J Bacteriol. 1971 Nov;108(2):668–679. doi: 10.1128/jb.108.2.668-679.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. GANESAN A. T., LEDERBERG J. PHYSICAL AND BIOLOGICAL STUDIES ON TRANSFORMING DNA. J Mol Biol. 1964 Sep;9:683–695. doi: 10.1016/s0022-2836(64)80175-3. [DOI] [PubMed] [Google Scholar]
  14. KELNER A. CORRELATION BETWEEN GENETIC TRANSFORMABILITY AND NON-PHOTOREACTIVABILITY IN BACILLUS SUBTILIS. J Bacteriol. 1964 Jun;87:1295–1303. doi: 10.1128/jb.87.6.1295-1303.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. MARMUR J., ANDERSON W. F., MATTHEWS L., BERNS K., GAJEWSKA E., LANE D., DOTY P. The effects of ultraviolet light on the biological and physical chemical properties of deoxyribonucleic acids. J Cell Comp Physiol. 1961 Dec;58(3):33–55. doi: 10.1002/jcp.1030580406. [DOI] [PubMed] [Google Scholar]
  16. Munakata N., Ikeda Y. Inactivation of transforming DNA by ultraviolet irradiation: a study with ultraviot-sensitive mutants of Bacillus subtilis. Mutat Res. 1969 Mar-Apr;7(2):133–139. doi: 10.1016/0027-5107(69)90025-6. [DOI] [PubMed] [Google Scholar]
  17. Munakata N., Saito H., Ikeda Y. Inactivation of transforming DNA by ultraviolet irradiation. Mutat Res. 1966 Apr;3(2):93–100. doi: 10.1016/0027-5107(66)90022-4. [DOI] [PubMed] [Google Scholar]
  18. Patrick M. H., Rupert C. S. The effects of host-cell reactivation on assay of U.V.-irradiated Haemophilus influenzae transforming DNA. Photochem Photobiol. 1967 Jan;6(1):1–20. doi: 10.1111/j.1751-1097.1967.tb08785.x. [DOI] [PubMed] [Google Scholar]
  19. Peterson J. M., Guild W. R. A differential solvent effect on thermal stability of genetic markers in DNA. J Mol Biol. 1966 Oct;20(3):497–503. doi: 10.1016/0022-2836(66)90005-2. [DOI] [PubMed] [Google Scholar]
  20. Reiter H., Strauss B. Repair of damage induced by a monofunctional alkylating agent in a transformable, ultraviolet-sensitive strain of Bacillus subtilis. J Mol Biol. 1965 Nov;14(1):179–194. doi: 10.1016/s0022-2836(65)80239-x. [DOI] [PubMed] [Google Scholar]
  21. Roger M., Beckmann C. O., Hotchkiss R. D. Separation of native and denatured fractions from partially denatured pneumococcal DNA. J Mol Biol. 1966 Jun;18(1):156–173. doi: 10.1016/s0022-2836(66)80083-9. [DOI] [PubMed] [Google Scholar]
  22. SETLOW R. B., CARRIER W. L. THE DISAPPEARANCE OF THYMINE DIMERS FROM DNA: AN ERROR-CORRECTING MECHANISM. Proc Natl Acad Sci U S A. 1964 Feb;51:226–231. doi: 10.1073/pnas.51.2.226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wilson G. A., Bott K. F. Nutritional factors influencing the development of competence in the Bacillus subtilis transformation system. J Bacteriol. 1968 Apr;95(4):1439–1449. doi: 10.1128/jb.95.4.1439-1449.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. ZAMENHOF S., LEIDY G., GREER S., HAHN E. Differential stabilities of individual heredity determinants in transforming principle. J Bacteriol. 1957 Aug;74(2):194–199. doi: 10.1128/jb.74.2.194-199.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES