Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1973 Apr;114(1):455–456. doi: 10.1128/jb.114.1.455-456.1973

Dipicolinic Acid Location in Intact Spores of Bacillus megaterium

Gary Leanz 1, Charles Gilvarg 1
PMCID: PMC251789  PMID: 4633349

Abstract

Beta-attenuation analysis of intact spores of Bacillus megaterium containing tritium-labeled dipicolinic acid has shown that dipicolinic acid is located in the spore protoplast and not in the cortex.

Full text

PDF
456

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BAILEY G. F., KARP S., SACKS L. E. ULTRAVIOLET-ABSORPTION SPECTRA OF DRY BACTERIAL SPORES. J Bacteriol. 1965 Apr;89:984–987. doi: 10.1128/jb.89.4.984-987.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BERGER J. A., MARR A. G. Sonic disruption of spores of Bacillus cereus. J Gen Microbiol. 1960 Feb;22:147–157. doi: 10.1099/00221287-22-1-147. [DOI] [PubMed] [Google Scholar]
  3. Bender A. E., Krebs H. A. The oxidation of various synthetic alpha-amino-acids by mammalian d-amino-acid oxidase, l-amino-acid oxidase of cobra venom and the l- and d-amino-acid oxidases of Neurospora crassa. Biochem J. 1950 Feb;46(2):210–219. doi: 10.1042/bj0460210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Donnellan J. E., Jr, Setlow R. B. Thymine Photoproducts but not Thymine Dimers Found in Ultraviolet-Irradiated Bacterial Spores. Science. 1965 Jul 16;149(3681):308–310. doi: 10.1126/science.149.3681.308. [DOI] [PubMed] [Google Scholar]
  5. Fukuda A., Gilvarg C. The relationship of dipicolinate and lysine biosynthesis in Bacillus megaterium. J Biol Chem. 1968 Jul 25;243(14):3871–3876. [PubMed] [Google Scholar]
  6. HASHIMOTO T., BLACK S. H., GERHARDT P. Development of fine structure, thermostability, and dipicolinate during sporogenesis in a bacillus. Can J Microbiol. 1960 Apr;6:203–212. doi: 10.1139/m60-022. [DOI] [PubMed] [Google Scholar]
  7. HOLBERT P. E. An effective method of preparing sections of Bacillus polymyxa sporangia and spores for electron microscopy. J Biophys Biochem Cytol. 1960 Apr;7:373–376. doi: 10.1083/jcb.7.2.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hitchins A. D., Greene R. A., Slepecky R. A. Effect of carbon source on size and associated properties of Bacillus megaterium spores. J Bacteriol. 1972 Apr;110(1):392–401. doi: 10.1128/jb.110.1.392-401.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. KNAYSI G. Determination, by spodography, of the intracellular distribution of mineral matter throughout the life history of Bacillus cereus. J Bacteriol. 1961 Oct;82:556–563. doi: 10.1128/jb.82.4.556-563.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. KNAYSI G. FURTHER OBSERVATIONS ON THE SPODOGRAM OF BACILLUS CEREUS ENDOSPORE. J Bacteriol. 1965 Aug;90:453–455. doi: 10.1128/jb.90.2.453-455.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. POWELL J. F., STRANGE R. E. Synthesis of dipicolinic acid from 2,6-diketopimelic acid. Nature. 1959 Sep 19;184:878–880. doi: 10.1038/184878a0. [DOI] [PubMed] [Google Scholar]
  12. Pearce S. M., Fitz-James P. C. Sporulation of a cortexless mutant of a variant of Bacillus cereus. J Bacteriol. 1971 Jan;105(1):339–348. doi: 10.1128/jb.105.1.339-348.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. THOMAS R. S. ULTRASTRUCTURAL LOCALIZATION OF MINERAL MATTER IN BACTERIAL SPORES BY MICRONINCINERATION. J Cell Biol. 1964 Oct;23:113–133. doi: 10.1083/jcb.23.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES