Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1968 Jul;96(1):43–50. doi: 10.1128/jb.96.1.43-50.1968

Effect of Mutation to Streptomycin Resistance on Amber Suppressor Genes

Nozomu Otsuji a, Hiroyuki Aono a,1
PMCID: PMC252250  PMID: 4874314

Abstract

Three classes of nonidentical streptomycin-resistant mutations were distinguished in Escherichia coli by their effect on the efficiency of suppression by an amber suppressor gene, sup E. The first class of mutation caused a strong restriction in efficiency of suppression of an amber codon in various cistrons of phage λ and in an alkaline phosphatase structural gene of E. coli. The second class caused weak restriction, and the third class caused no restriction. The restrictive effect of the streptomycin resistance mutation of the first class on the sup E gene was reduced by addition of streptomycin. This mutation had little effect on efficiencies of suppression by amber suppressor genes sup D and sup F. Analyses on the alkaline phosphatase formed in the suppressor strain indicated that mutation to restrictive streptomycin resistance causes a reduction in translation of the amber codon in the alkaline phosphatase structural gene.

Full text

PDF
46

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. COX E. C., WHITE J. R., FLAKS J. G. STREPTOMYCIN ACTION AND THE RIBOSOME. Proc Natl Acad Sci U S A. 1964 Apr;51:703–709. doi: 10.1073/pnas.51.4.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Capecchi M. R., Gussin G. N. Suppression in vitro: Identification of a Serine-sRNA as a "Nonsense" Suppressor. Science. 1965 Jul 23;149(3682):417–422. doi: 10.1126/science.149.3682.417. [DOI] [PubMed] [Google Scholar]
  3. Couturier M., Desmet L., Thomas R. High pleiotropy of streptomycin mutations in Escherichia coli. Biochem Biophys Res Commun. 1964 Jun 15;16(3):244–248. doi: 10.1016/0006-291x(64)90333-x. [DOI] [PubMed] [Google Scholar]
  4. DAVIES J. E. STUDIES ON THE RIBOSOMES OF STREPTOMYCIN-SENSITIVE AND RESISTANT STRAINS OF ESCHERICHIA COLI. Proc Natl Acad Sci U S A. 1964 Apr;51:659–664. doi: 10.1073/pnas.51.4.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Engelhardt D. L., Webster R. E., Wilhelm R. C., Zinder N. In vitro studies on the mechanism of suppression of a nonsense mutation. Proc Natl Acad Sci U S A. 1965 Dec;54(6):1791–1797. doi: 10.1073/pnas.54.6.1791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gallucci E., Garen A. Suppressor genes for nonsense mutations. II. The su-4 and su-5 suppressor genes of Escherichia coli. J Mol Biol. 1966 Jan;15(1):193–200. doi: 10.1016/s0022-2836(66)80220-6. [DOI] [PubMed] [Google Scholar]
  7. Garen A., Garen S., Wilhelm R. C. Suppressor genes for nonsense mutations. I. The Su-1, Su-2 and Su-3 genes of Escherichia coli. J Mol Biol. 1965 Nov;14(1):167–178. doi: 10.1016/s0022-2836(65)80238-8. [DOI] [PubMed] [Google Scholar]
  8. Gartner T. K., Orias E. Effects of mutations to streptomycin resistance on the rate of translation of mutant genetic information. J Bacteriol. 1966 Mar;91(3):1021–1028. doi: 10.1128/jb.91.3.1021-1028.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gorini L., Jacoby G. A., Breckenridge L. Ribosomal ambiguity. Cold Spring Harb Symp Quant Biol. 1966;31:657–664. doi: 10.1101/sqb.1966.031.01.084. [DOI] [PubMed] [Google Scholar]
  10. Kuwano M., Ishizawa M., Endo H. Su-II-specific restriction of amber suppression by mutation to streptomycin resistance. J Mol Biol. 1968 Apr 28;33(2):513–516. doi: 10.1016/0022-2836(68)90209-x. [DOI] [PubMed] [Google Scholar]
  11. LEDERBERG E. M., CAVALLI-SFORZA L., LEDERBERG J. INTERACTION OF STREPTOMYCIN AND A SUPPRESSOR FOR GALACTOSE FERMENTATION IN E. COLI K-12. Proc Natl Acad Sci U S A. 1964 Apr;51:678–682. doi: 10.1073/pnas.51.4.678. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. LEVINTHAL C., SIGNER E. R., FETHEROLF K. Reactivation and hybridization of reduced alkaline phosphatase. Proc Natl Acad Sci U S A. 1962 Jul 15;48:1230–1237. doi: 10.1073/pnas.48.7.1230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. NOTANI G. W., ENGELHARDT D. L., KONIGSBERG W., ZINDER N. D. SUPPRESSION OF A COAT PROTEIN MUTANT OF THE BACTERIOPHAGE F2. J Mol Biol. 1965 Jun;12:439–447. doi: 10.1016/s0022-2836(65)80266-2. [DOI] [PubMed] [Google Scholar]
  15. Neu H. C., Heppel L. A. The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts. J Biol Chem. 1965 Sep;240(9):3685–3692. [PubMed] [Google Scholar]
  16. OTSUJI N., SEKIGUCHI M., IIJIMA T., TAKAGI Y. Induction of phage formation in the lysogenic Escherichia coli K-12 by mitomycin C. Nature. 1959 Oct 3;184(Suppl 14):1079–1080. doi: 10.1038/1841079b0. [DOI] [PubMed] [Google Scholar]
  17. Orias E., Gartner T. K. Suppression of amber and ochre rII mutants of bacteriophage T4 by streptomycin. J Bacteriol. 1966 Jun;91(6):2210–2215. doi: 10.1128/jb.91.6.2210-2215.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. SMITHIES O. Zone electrophoresis in starch gels: group variations in the serum proteins of normal human adults. Biochem J. 1955 Dec;61(4):629–641. doi: 10.1042/bj0610629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. STRETTON A. O., BRENNER S. MOLECULAR CONSEQUENCES OF THE AMBER MUTATION AND ITS SUPPRESSION. J Mol Biol. 1965 Jun;12:456–465. doi: 10.1016/s0022-2836(65)80268-6. [DOI] [PubMed] [Google Scholar]
  20. Smith J. D., Abelson J. N., Clark B. F., Goodman H. M., Brenner S. Studies on amber suppressor tRNA. Cold Spring Harb Symp Quant Biol. 1966;31:479–485. doi: 10.1101/sqb.1966.031.01.062. [DOI] [PubMed] [Google Scholar]
  21. WEIGERT M. G., GAREN A. AMINO ACID SUBSTITUTIONS RESULTING FROM SUPPRESSION OF NONSENSE MUTATIONS. I. SERINE INSERTION BY THE SU-1 SUPPRESSOR GENE. J Mol Biol. 1965 Jun;12:448–455. doi: 10.1016/s0022-2836(65)80267-4. [DOI] [PubMed] [Google Scholar]
  22. Weigert M. G., Garen A. Base composition of nonsense codons in E. coli. Evidence from amino-acid substitutions at a tryptophan site in alkaline phosphatase. Nature. 1965 Jun 5;206(988):992–994. doi: 10.1038/206992a0. [DOI] [PubMed] [Google Scholar]
  23. Weigert M. G., Lanka E., Garen A. Amino acid substitutions resulting from suppression of nonsense mutations. II. Glutamine insertion by the Su-2 gene; tyrosine insertion by the Su-3 gene. J Mol Biol. 1965 Dec;14(2):522–527. doi: 10.1016/s0022-2836(65)80201-7. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES