Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1985 Nov;56(2):356–364. doi: 10.1128/jvi.56.2.356-364.1985

Effect of neuraminidase treatment of cells and effect of soluble glycoproteins on type 3 reovirus attachment to murine L cells.

J R Gentsch, A F Pacitti
PMCID: PMC252582  PMID: 4057353

Abstract

The effect of pretreatment of murine L cells with bacterial neuraminidases on type 3 reovirus attachment was examined. We observed that such treatments resulted in a 60 to 80% decrease of subsequent attachment of 35S-labeled type 3 reovirus in a time- and dose-dependent manner. This result was specific for removal of cell surface sialic acid residues since the specific neuraminidase inhibitor 2-deoxy-2,3-dehydro-n-acetyl neuraminic acid completely prevented the observed effect. Although the total amount of radiolabeled virus bound to neuraminidase-treated cells was greatly reduced, unlabeled reovirus competed only slightly less efficiently for the attachment of 35S-labeled reovirus to neuraminidase-treated versus mock-treated L cells, suggesting that the specificity of the virus interaction with cellular receptor sites was only slightly diminished. Saturation experiments with mock-treated cells or with cells treated with Vibrio cholerae or with V. cholerae plus Arthrobacter ureafaciens neuraminidases indicated that the number of specific cellular receptor sites for type 3 reovirus were reduced by about 47%. We determined that under the neuraminidase digestion conditions used in this experiment we were able to remove a maximum 75% of the total N-acetylneuraminic acid of L cells. Our results also demonstrated that glycoproteins bearing a large amount of sialic acid containing oligosaccharides as well as purified N-acetylneuraminic acid, N-glycolylneuraminic acid, and N-acetylneuraminyl lactose were inhibitors of attachment, while proteins containing no sialic acid or negligible amounts of sialic acid did not inhibit attachment. High concentrations of various monosaccharides and lactose had no effect on reovirus attachment, in agreement with the recent results of Armstrong and his collaborators (Armstrong et al., Virology, 138:37-48, 1984). These data are also supported by the observation that gangliosides are inhibitors of viral attachment (Armstrong et al., Virology, 138:37-48, 1984). Taken together, our results suggest that cell surface sialic acid-containing glycoconjugates are involved in type 3 reovirus binding to murine L cells.

Full text

PDF
358

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong G. D., Paul R. W., Lee P. W. Studies on reovirus receptors of L cells: virus binding characteristics and comparison with reovirus receptors of erythrocytes. Virology. 1984 Oct 15;138(1):37–48. doi: 10.1016/0042-6822(84)90145-4. [DOI] [PubMed] [Google Scholar]
  2. Co M. S., Gaulton G. N., Fields B. N., Greene M. I. Isolation and biochemical characterization of the mammalian reovirus type 3 cell-surface receptor. Proc Natl Acad Sci U S A. 1985 Mar;82(5):1494–1498. doi: 10.1073/pnas.82.5.1494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Epstein R. L., Powers M. L., Rogart R. B., Weiner H. L. Binding of 125I-labeled reovirus to cell surface receptors. Virology. 1984 Feb;133(1):46–55. doi: 10.1016/0042-6822(84)90424-0. [DOI] [PubMed] [Google Scholar]
  4. Fournet B., Montreuil J., Strecker G., Dorland L., Haverkamp J., Vliegenthart F. G., Binette J. P., Schmid K. Determination of the primary structures of 16 asialo-carbohydrate units derived from human plasma alpha 1-acid glycoprotein by 360-MHZ 1H NMR spectroscopy and permethylation analysis. Biochemistry. 1978 Nov 28;17(24):5206–5214. doi: 10.1021/bi00617a021. [DOI] [PubMed] [Google Scholar]
  5. Fried H., Cahan L. D., Paulson J. C. Polyoma virus recognizes specific sialyligosaccharide receptors on host cells. Virology. 1981 Feb;109(1):188–192. doi: 10.1016/0042-6822(81)90485-2. [DOI] [PubMed] [Google Scholar]
  6. GELB L. D., LERNER A. M. REOVIRUS HEMAGGLUTINATION: INHIBITION BY N-ACETYL-D-GLUCOSAMINE. Science. 1965 Jan 22;147(3656):404–405. doi: 10.1126/science.147.3656.404. [DOI] [PubMed] [Google Scholar]
  7. GOMATOS P. J., TAMM I. Reactive sites of reovirus type 3 and their interaction with receptor substances. Virology. 1962 Jul;17:455–461. doi: 10.1016/0042-6822(62)90140-x. [DOI] [PubMed] [Google Scholar]
  8. GOTTSCHALK A., GRAHAM E. R. 6-alpha-D-Sialyl-N-acetyl-galactosamine: the neuraminidase-susceptible prosthetic group of bovine salivary mucoprotein. Biochim Biophys Acta. 1959 Aug;34:380–391. doi: 10.1016/0006-3002(59)90290-2. [DOI] [PubMed] [Google Scholar]
  9. Gentsch J. R., Fields B. N. Tryptic peptide analysis of outer capsid polypeptides of mammalian reovirus serotypes 1, 2, and 3. J Virol. 1981 Apr;38(1):208–218. doi: 10.1128/jvi.38.1.208-218.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gentsch J. R., Hatfield J. W. Saturable attachment sites for type 3 mammalian reovirus on murine L cells and human HeLa cells. Virus Res. 1984;1(5):401–414. doi: 10.1016/0168-1702(84)90026-1. [DOI] [PubMed] [Google Scholar]
  11. HAFF R. F., STEWART R. C. ROLE OF SIALIC ACID RECEPTORS IN ADSORPTION OF INFLUENZA VIRUS TO CHICK EMBRYO CELLS. J Immunol. 1965 Jun;94:842–851. [PubMed] [Google Scholar]
  12. Krysteva M. A., Mancheva I. N., Dobrev I. D. Studies on tyrosine environments of chicken ovomucoid. The environment of the most-exposed tyrosine. Eur J Biochem. 1973 Dec 3;40(1):155–161. doi: 10.1111/j.1432-1033.1973.tb03180.x. [DOI] [PubMed] [Google Scholar]
  13. Lee P. W., Hayes E. C., Joklik W. K. Protein sigma 1 is the reovirus cell attachment protein. Virology. 1981 Jan 15;108(1):156–163. doi: 10.1016/0042-6822(81)90535-3. [DOI] [PubMed] [Google Scholar]
  14. Maratos-Flier E., Kahn C. R., Spriggs D. R., Fields B. N. Specific plasma membrane receptors for reovirus on rat pituitary cells in culture. J Clin Invest. 1983 Aug;72(2):617–621. doi: 10.1172/JCI111010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Markwell M. A., Paulson J. C. Sendai virus utilizes specific sialyloligosaccharides as host cell receptor determinants. Proc Natl Acad Sci U S A. 1980 Oct;77(10):5693–5697. doi: 10.1073/pnas.77.10.5693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Montreuil J. Primary structure of glycoprotein glycans: basis for the molecular biology of glycoproteins. Adv Carbohydr Chem Biochem. 1980;37:157–223. doi: 10.1016/s0065-2318(08)60021-9. [DOI] [PubMed] [Google Scholar]
  17. Ramig R. F., Cross R. K., Fields B. N. Genome RNAs and polypeptides of reovirus serotypes 1, 2, and 3. J Virol. 1977 Jun;22(3):726–733. doi: 10.1128/jvi.22.3.726-733.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Roboz J., Suttajit M., Bekesi J. G. Elimination of 2-deoxyribose interference in the thiobarbituric acid determination of N-acetylneuraminic acid in tumor cells by pH-dependent extraction with cyclohexanone. Anal Biochem. 1981 Jan 15;110(2):380–388. doi: 10.1016/0003-2697(81)90207-4. [DOI] [PubMed] [Google Scholar]
  19. Rogers G. N., Pritchett T. J., Lane J. L., Paulson J. C. Differential sensitivity of human, avian, and equine influenza A viruses to a glycoprotein inhibitor of infection: selection of receptor specific variants. Virology. 1983 Dec;131(2):394–408. doi: 10.1016/0042-6822(83)90507-x. [DOI] [PubMed] [Google Scholar]
  20. Schauer R. Chemistry, metabolism, and biological functions of sialic acids. Adv Carbohydr Chem Biochem. 1982;40:131–234. doi: 10.1016/s0065-2318(08)60109-2. [DOI] [PubMed] [Google Scholar]
  21. Silverstein S. C., Christman J. K., Acs G. The reovirus replicative cycle. Annu Rev Biochem. 1976;45:375–408. doi: 10.1146/annurev.bi.45.070176.002111. [DOI] [PubMed] [Google Scholar]
  22. Smith R. E., Zweerink H. J., Joklik W. K. Polypeptide components of virions, top component and cores of reovirus type 3. Virology. 1969 Dec;39(4):791–810. doi: 10.1016/0042-6822(69)90017-8. [DOI] [PubMed] [Google Scholar]
  23. Spiro R. G., Bhoyroo V. D. Structure of the O-glycosidically linked carbohydrate units of fetuin. J Biol Chem. 1974 Sep 25;249(18):5704–5717. [PubMed] [Google Scholar]
  24. WARREN L. The thiobarbituric acid assay of sialic acids. J Biol Chem. 1959 Aug;234(8):1971–1975. [PubMed] [Google Scholar]
  25. Yamashita K., Tachibana Y., Hitoi A., Kobata A. Sialic acid-containing sugar chains of hen ovalbumin and ovomucoid. Carbohydr Res. 1984 Jul 15;130:271–288. doi: 10.1016/0008-6215(84)85285-4. [DOI] [PubMed] [Google Scholar]
  26. Yoshima H., Furthmayr H., Kobata A. Structures of the asparagine-linked sugar chains of glycophorin A. J Biol Chem. 1980 Oct 25;255(20):9713–9718. [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES