Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1984 Aug;51(2):497–504. doi: 10.1128/jvi.51.2.497-504.1984

Uncoating of influenza virus in endosomes.

A Yoshimura, S Ohnishi
PMCID: PMC254465  PMID: 6431119

Abstract

The intracellular uncoating site of influenza virus was studied by measuring the fluorescence intensity of probes conjugated to the virus or the isolated hemagglutinin and also by assaying virus replication under various incubation conditions. Acidification of the viral environment was monitored by the decrease in the fluorescence intensity of fluorescein isothiocyanate, and transport of the virus particles into secondary lysosomes was assayed by the increase in the fluorescence intensity of fluorescein isothiocyanate diphosphate. The intracellular pH was estimated by the ratio of fluorescence intensities excited at two different wavelengths. It was found that the viral environment became acidified to a pH value of 5.1 to 5.2 within 10 min at 37 degrees C or 1 h at 20 degrees C after endocytosis. Addition of ammonium chloride to the medium rapidly raised the pH to 6.7. Transport of the virus particles into the secondary lysosomes was slower and negligibly low during those incubation periods. Virus replication occurred when the cells were incubated for 10 min at 37 degrees C or for 1 h at 20 degrees C, followed by incubation in the presence of ammonium chloride for a total of 12 h. These results indicate the uncoating of influenza virus in endosomes before reaching the secondary lysosomes.

Full text

PDF
501

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Helenius A., Kartenbeck J., Simons K., Fries E. On the entry of Semliki forest virus into BHK-21 cells. J Cell Biol. 1980 Feb;84(2):404–420. doi: 10.1083/jcb.84.2.404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. King E. J., Nicholson T. F. The preparation of phenyl phosphoric esters. Biochem J. 1939 Aug;33(8):1182–1184. doi: 10.1042/bj0331182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  4. Maeda T., Asano A., Oki K., Okada Y., Onishi S. A spin-label study on fusion of red blood cells induced by hemagglutinating virus of Japan. Biochemistry. 1975 Aug 26;14(17):3736–3741. doi: 10.1021/bi00688a003. [DOI] [PubMed] [Google Scholar]
  5. Maeda T., Kawasaki K., Ohnishi S. Interaction of influenza virus hemagglutinin with target membrane lipids is a key step in virus-induced hemolysis and fusion at pH 5.2. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4133–4137. doi: 10.1073/pnas.78.7.4133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Maeda T., Ohnishi S. Activation of influenza virus by acidic media causes hemolysis and fusion of erythrocytes. FEBS Lett. 1980 Dec 29;122(2):283–287. doi: 10.1016/0014-5793(80)80457-1. [DOI] [PubMed] [Google Scholar]
  7. Marsh M., Bolzau E., Helenius A. Penetration of Semliki Forest virus from acidic prelysosomal vacuoles. Cell. 1983 Mar;32(3):931–940. doi: 10.1016/0092-8674(83)90078-8. [DOI] [PubMed] [Google Scholar]
  8. Maxfield F. R. Weak bases and ionophores rapidly and reversibly raise the pH of endocytic vesicles in cultured mouse fibroblasts. J Cell Biol. 1982 Nov;95(2 Pt 1):676–681. doi: 10.1083/jcb.95.2.676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Merion M., Schlesinger P., Brooks R. M., Moehring J. M., Moehring T. J., Sly W. S. Defective acidification of endosomes in Chinese hamster ovary cell mutants "cross-resistant" to toxins and viruses. Proc Natl Acad Sci U S A. 1983 Sep;80(17):5315–5319. doi: 10.1073/pnas.80.17.5315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ohkuma S., Poole B. Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3327–3331. doi: 10.1073/pnas.75.7.3327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Sato S. B., Kawasaki K., Ohnishi S. Hemolytic activity of influenza virus hemagglutinin glycoproteins activated in mildly acidic environments. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3153–3157. doi: 10.1073/pnas.80.11.3153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Tycko B., Maxfield F. R. Rapid acidification of endocytic vesicles containing alpha 2-macroglobulin. Cell. 1982 Mar;28(3):643–651. doi: 10.1016/0092-8674(82)90219-7. [DOI] [PubMed] [Google Scholar]
  13. White J., Helenius A. pH-dependent fusion between the Semliki Forest virus membrane and liposomes. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3273–3277. doi: 10.1073/pnas.77.6.3273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Yoshimura A., Kuroda K., Kawasaki K., Yamashina S., Maeda T., Ohnishi S. Infectious cell entry mechanism of influenza virus. J Virol. 1982 Jul;43(1):284–293. doi: 10.1128/jvi.43.1.284-293.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES