Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1985 Mar;53(3):735–741. doi: 10.1128/jvi.53.3.735-741.1985

Fine structure of the cottontail rabbit papillomavirus mRNAs expressed in the transplantable VX2 carcinoma.

O Danos, E Georges, G Orth, M Yaniv
PMCID: PMC254701  PMID: 2983085

Abstract

We analyzed the polyadenylated mRNAs transcribed from the cottontail rabbit papillomavirus genomes present in the domestic rabbit transplantable carcinoma line VX2, employing a combination of S1 nuclease mapping and primer extension techniques with vector M13-based single-stranded DNA probes. Each of the two major mRNA species (1,860 and 1,110 bases long) contained two exons which corresponded to the E6-E7 and E2-E4 open reading frames. The splice donor site for these transcripts was located at position 1371 at the beginning of the E1 open reading frame. Consequently, the splicing event did not lead to the fusion of the E region proximal (E6 and E7) and distal (E2, E4, or E5) open reading frames. The translation of the polycistronic RNA could result in the production of E6 and E7 proteins alone or of an additional E1-E4 fusion product if translation reinitiation can occur after the E7 stop codon. A heterogeneity was detected in the 5' ends of the longer transcript; E6 transcripts could thus yield a full-length or a truncated E6 protein. We also detected a minor subset of mRNAs covering the E2-E4 coding region and including at least three species with estimated sizes of 4.2, 2.8, and 1.8 kilobases. All the viral transcripts detected in the VX2 tumor cells were polyadenylated at the same site (position 4367) 20 base pairs beyond the first AATAAA signal which borders the E region.

Full text

PDF
737

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Biggin M., Farrell P. J., Barrell B. G. Transcription and DNA sequence of the BamHI L fragment of B95-8 Epstein-Barr virus. EMBO J. 1984 May;3(5):1083–1090. doi: 10.1002/j.1460-2075.1984.tb01933.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Danos O., Giri I., Thierry F., Yaniv M. Papillomavirus genomes: sequences and consequences. J Invest Dermatol. 1984 Jul;83(1 Suppl):7s–11s. doi: 10.1111/1523-1747.ep12281115. [DOI] [PubMed] [Google Scholar]
  3. Favre M., Jibard N., Orth G. Restriction mapping and physical characterization of the cottontail rabbit papillomavirus genome in transplantable VX2 and VX7 domestic rabbit carcinomas. Virology. 1982 Jun;119(2):298–309. doi: 10.1016/0042-6822(82)90090-3. [DOI] [PubMed] [Google Scholar]
  4. Georges E., Croissant O., Bonneaud N., Orth G. Physical state and transcription of the cottontail rabbit papillomavirus genome in warts and transplantable VX2 and VX7 carcinomas of domestic rabbits. J Virol. 1984 Aug;51(2):530–538. doi: 10.1128/jvi.51.2.530-538.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ghosh P. K., Piatak M., Reddy V. B., Swinscoe J., Lebowitz P., Weissman S. M. Transcription of the SV40 genome in virus-transformed cells and early lytic infection. Cold Spring Harb Symp Quant Biol. 1980;44(Pt 1):31–39. doi: 10.1101/sqb.1980.044.01.006. [DOI] [PubMed] [Google Scholar]
  6. Kozak M. Comparison of initiation of protein synthesis in procaryotes, eucaryotes, and organelles. Microbiol Rev. 1983 Mar;47(1):1–45. doi: 10.1128/mr.47.1.1-45.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Leder P., Battey J., Lenoir G., Moulding C., Murphy W., Potter H., Stewart T., Taub R. Translocations among antibody genes in human cancer. Science. 1983 Nov 18;222(4625):765–771. doi: 10.1126/science.6356357. [DOI] [PubMed] [Google Scholar]
  8. Mount S. M. A catalogue of splice junction sequences. Nucleic Acids Res. 1982 Jan 22;10(2):459–472. doi: 10.1093/nar/10.2.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Nakabayashi Y., Chattopadhyay S. K., Lowy D. R. The transforming function of bovine papillomavirus DNA. Proc Natl Acad Sci U S A. 1983 Oct;80(19):5832–5836. doi: 10.1073/pnas.80.19.5832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Nasseri M., Wettstein F. O. Differences exist between viral transcripts in cottontail rabbit papillomavirus-induced benign and malignant tumors as well as non-virus-producing and virus-producing tumors. J Virol. 1984 Sep;51(3):706–712. doi: 10.1128/jvi.51.3.706-712.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nasseri M., Wettstein F. O., Stevens J. G. Two colinear and spliced viral transcripts are present in non-virus-producing benign and malignant neoplasms induced by the shope (rabbit) papilloma virus. J Virol. 1982 Oct;44(1):263–268. doi: 10.1128/jvi.44.1.263-268.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Pfister H. Biology and biochemistry of papillomaviruses. Rev Physiol Biochem Pharmacol. 1984;99:111–181. doi: 10.1007/BFb0027716. [DOI] [PubMed] [Google Scholar]
  13. SYVERTON J. T. The pathogenesis of the rabbit papilloma-to-carcinoma sequence. Ann N Y Acad Sci. 1952 Jul 10;54(6):1126–1140. doi: 10.1111/j.1749-6632.1952.tb39983.x. [DOI] [PubMed] [Google Scholar]
  14. Sarver N., Rabson M. S., Yang Y. C., Byrne J. C., Howley P. M. Localization and analysis of bovine papillomavirus type 1 transforming functions. J Virol. 1984 Nov;52(2):377–388. doi: 10.1128/jvi.52.2.377-388.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Schibler U., Hagenbüchle O., Wellauer P. K., Pittet A. C. Two promoters of different strengths control the transcription of the mouse alpha-amylase gene Amy-1a in the parotid gland and the liver. Cell. 1983 Jun;33(2):501–508. doi: 10.1016/0092-8674(83)90431-2. [DOI] [PubMed] [Google Scholar]
  16. Wettstein F. O., Stevens J. G. Variable-sized free episomes of Shope papilloma virus DNA are present in all non-virus-producing neoplasms and integrated episomes are detected in some. Proc Natl Acad Sci U S A. 1982 Feb;79(3):790–794. doi: 10.1073/pnas.79.3.790. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES