Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1987 Dec;61(12):3946–3949. doi: 10.1128/jvi.61.12.3946-3949.1987

Interference with viral infection by defective RNA replicase.

Y Inokuchi 1, A Hirashima 1
PMCID: PMC256014  PMID: 3316709

Abstract

RNA-dependent RNA and DNA polymerases have a conserved segment, Tyr-X-Asp-Asp (G. Karmer and P. Argos, Nucleic Acids Res. 12:7269-7282, 1984). To investigate the function of this segment, we changed the Gly residue at position 357 in the conserved sequence Tyr-356-Gly-357-Asp-358-Asp-359 of the replicase of RNA coliphage Q beta to Ala, Ser, Pro, Met, or Val and examined the replicase activity in vivo. Cells carrying the variant plasmids lost the replicase activity and severely inhibited the proliferation of phage Q beta (group III) and related phage SP (group IV) by suppressing phage RNA synthesis. In contrast, substitution of the Gly residue at 390 showed only a slight inhibitory effect, although replicase activity was also lost. These results suggest that the cells harboring an altered replicase at the conserved segment can interfere specifically with the wild-type phage and different but related phage infections.

Full text

PDF
3948

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ando A., Furuse K., Miyake T., Shiba T., Watanabe I. Three complementation subgroups in group IV RNA phago SP. Virology. 1976 Oct 1;74(1):64–72. doi: 10.1016/0042-6822(76)90128-8. [DOI] [PubMed] [Google Scholar]
  2. Coleman J., Green P. J., Inouye M. The use of RNAs complementary to specific mRNAs to regulate the expression of individual bacterial genes. Cell. 1984 Jun;37(2):429–436. doi: 10.1016/0092-8674(84)90373-8. [DOI] [PubMed] [Google Scholar]
  3. Coleman J., Hirashima A., Inokuchi Y., Green P. J., Inouye M. A novel immune system against bacteriophage infection using complementary RNA (micRNA). Nature. 1985 Jun 13;315(6020):601–603. doi: 10.1038/315601a0. [DOI] [PubMed] [Google Scholar]
  4. Denhardt D. T. A membrane-filter technique for the detection of complementary DNA. Biochem Biophys Res Commun. 1966 Jun 13;23(5):641–646. doi: 10.1016/0006-291x(66)90447-5. [DOI] [PubMed] [Google Scholar]
  5. Furuse K., Hirashima A., Harigai H., Ando A., Watanabe K., Kurosawa K., Inokuchi Y., Watanabe I. Grouping of RNA coliphages based on analysis of the sizes of their RNAs and proteins. Virology. 1979 Sep;97(2):328–341. doi: 10.1016/0042-6822(79)90344-1. [DOI] [PubMed] [Google Scholar]
  6. Inokuchi Y., Takahashi R., Hirose T., Inayama S., Jacobson A. B., Hirashima A. The complete nucleotide sequence of the group II RNA coliphage GA. J Biochem. 1986 Apr;99(4):1169–1180. doi: 10.1093/oxfordjournals.jbchem.a135580. [DOI] [PubMed] [Google Scholar]
  7. Kamer G., Argos P. Primary structural comparison of RNA-dependent polymerases from plant, animal and bacterial viruses. Nucleic Acids Res. 1984 Sep 25;12(18):7269–7282. doi: 10.1093/nar/12.18.7269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Messing J. New M13 vectors for cloning. Methods Enzymol. 1983;101:20–78. doi: 10.1016/0076-6879(83)01005-8. [DOI] [PubMed] [Google Scholar]
  9. Messing J., Vieira J. A new pair of M13 vectors for selecting either DNA strand of double-digest restriction fragments. Gene. 1982 Oct;19(3):269–276. doi: 10.1016/0378-1119(82)90016-6. [DOI] [PubMed] [Google Scholar]
  10. Miyake T., Haruna I., Shiba T., Ito Y. H., Yamane K. Grouping of RNA phages based on the template specificity of their RNA replicases. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2022–2024. doi: 10.1073/pnas.68.9.2022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Saigo K., Kugimiya W., Matsuo Y., Inouye S., Yoshioka K., Yuki S. Identification of the coding sequence for a reverse transcriptase-like enzyme in a transposable genetic element in Drosophila melanogaster. Nature. 1984 Dec 13;312(5995):659–661. doi: 10.1038/312659a0. [DOI] [PubMed] [Google Scholar]
  12. Taniguchi T., Palmieri M., Weissmann C. QB DNA-containing hybrid plasmids giving rise to QB phage formation in the bacterial host. Nature. 1978 Jul 20;274(5668):223–228. doi: 10.1038/274223a0. [DOI] [PubMed] [Google Scholar]
  13. Thomas P. S. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5201–5205. doi: 10.1073/pnas.77.9.5201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Vieira J., Messing J. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene. 1982 Oct;19(3):259–268. doi: 10.1016/0378-1119(82)90015-4. [DOI] [PubMed] [Google Scholar]
  15. Wahl G. M., Stern M., Stark G. R. Efficient transfer of large DNA fragments from agarose gels to diazobenzyloxymethyl-paper and rapid hybridization by using dextran sulfate. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3683–3687. doi: 10.1073/pnas.76.8.3683. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES