Skip to main content
Journal of Biological Physics logoLink to Journal of Biological Physics
. 2008 Apr 5;33(5-6):357–370. doi: 10.1007/s10867-008-9059-2

Influence of Distal Residue B10 on CO Dynamics in Myoglobin and Neuroglobin

Karin Nienhaus 1,, G Ulrich Nienhaus 1,2
PMCID: PMC2565765  PMID: 19669524

Abstract

For many years, myoglobin has served as a paradigm for structure–function studies in proteins. Ligand binding and migration within myoglobin has been studied in great detail by crystallography and spectroscopy, showing that gaseous ligands such as O2, CO, and NO not only bind to the heme iron but may also reside transiently in three internal ligand docking sites, the primary docking site B and secondary sites C and D. These sites affect ligand association and dissociation in specific ways. Neuroglobin is another vertebrate heme protein that also binds small ligands. Ligand migration pathways in neuroglobin have not yet been elucidated. Here, we have used Fourier transform infrared temperature derivative spectroscopy at cryogenic temperatures to compare the influence of the side chain volume of amino acid residue B10 on ligand migration to and rebinding from docking sites in myoglobin and neuroglobin.

Keywords: Fourier transform infrared spectroscopy, Ligand migration, Myoglobin, Neuroglobin, Temperature derivative spectroscopy

References

  • 1.Hardison, R.C.: A brief history of hemoglobins: plant, animal, protist, and bacteria. Proc. Natl. Acad. Sci. U. S. A. 93, 5675–5679 (1996) [DOI] [PMC free article] [PubMed]
  • 2.Weber, R.E., Vinogradov, S.N.: Nonvertebrate hemoglobins: functions and molecular adaptations. Physiol. Rev. 81, 569–628 (2001) [DOI] [PubMed]
  • 3.Bisig, D.A., Di Iorio, E.E., Diederichs, K., Winterhalter, K.H., Piontek, K.: Crystal structure of Asian elephant (Elephas maximus) cyano-metmyoglobin at 1.78-A resolution. Phe29(B10) accounts for its unusual ligand binding properties. J. Biol. Chem. 270, 20754–20762 (1995) [DOI] [PubMed]
  • 4.Olson, J.S., Mathews, A.J., Rohlfs, R.J., Springer, B.A., Egeberg, K.D., Sligar, S.G., Tame, J., Renaud, J.P., Nagai, K.: The role of the distal histidine in myoglobin and haemoglobin. Nature 336, 265–266 (1988) [DOI] [PubMed]
  • 5.Olson, J.S., Phillips Jr., G.N.: Kinetic pathways and barriers for ligand binding to myoglobin. J. Biol. Chem. 271, 17593–17596 (1996) [DOI] [PubMed]
  • 6.Wittenberg, J.B., Bolognesi, M., Wittenberg, B.A., Guertin, M.: Truncated hemoglobins: a new family of hemoglobins widely distributed in bacteria, unicellular eukaryotes, and plants. J. Biol. Chem. 277, 871–874 (2002) [DOI] [PubMed]
  • 7.Gardner, P.R., Gardner, A.M., Martin, L.A., Salzman, A.L.: Nitric oxide dioxygenase: an enzymic function for flavohemoglobin. Proc. Natl. Acad. Sci. U. S. A. 95, 10378–10383 (1998) [DOI] [PMC free article] [PubMed]
  • 8.Arredondo-Peter, R., Hargrove, M.S., Moran, J.F., Sarath, G., Klucas, R.V.: Plant hemoglobins. Plant Physiol. 118, 1121–1125 (1998) [DOI] [PMC free article] [PubMed]
  • 9.Smagghe, B.J., Kundu, S., Hoy, J.A., Halder, P., Weiland, T.R., Savage, A., Venugopal, A., Goodman, M., Premer, S., Hargrove, M.S.: Role of phenylalanine B10 in plant nonsymbiotic hemoglobins. Biochemistry 45, 9735–9745 (2006) [DOI] [PubMed]
  • 10.Burmester, T., Weich, B., Reinhardt, S., Hankeln, T.: A vertebrate globin expressed in the brain. Nature 407, 520–523 (2000) [DOI] [PubMed]
  • 11.Burmester, T., Ebner, B., Weich, B., Hankeln, T.: Cytoglobin: a novel globin type ubiquitously expressed in vertebrate tissues. Mol. Biol. Evol. 19, 416–421 (2002) [DOI] [PubMed]
  • 12.Austin, R.H., Beeson, K.W., Eisenstein, L., Frauenfelder, H., Gunsalus, I.C.: Dynamics of ligand binding to myoglobin. Biochemistry 14, 5355–5373 (1975) [DOI] [PubMed]
  • 13.Nienhaus, G.U., Heinzl, J., Huenges, E., Parak, F.: Protein crystal dynamics studied by time-resolved analysis of X-ray diffuse scattering. Nature 338, 665–666 (1989) [DOI]
  • 14.Frauenfelder, H., Nienhaus, G.U., Johnson, J.B.: Rate processes in proteins. Ber. Bunsenges. Phys. Chem. 95, 272–278 (1991)
  • 15.Parak, F.G., Nienhaus, G.U.: Myoglobin, a paradigm in the study of protein dynamics. Chem. Phys. Chem. 3, 249–254 (2002) [DOI] [PubMed]
  • 16.Samuni, U., Dantsker, D., Roche, C.J., Friedman, J.M.: Ligand recombination and a hierarchy of solvent slaved dynamics: the origin of kinetic phases in hemeproteins. Gene 398, 234–248 (2007) [DOI] [PMC free article] [PubMed]
  • 17.Parak, F., Frolov, E.N., Mössbauer, R.L., Goldanskii, V.I.: Dynamics of metmyoglobin crystals investigated by nuclear gamma resonance absorption. J. Mol. Biol. 145, 825–833 (1981) [DOI] [PubMed]
  • 18.Parak, F., Knapp, E.W., Kucheida, D.: Protein dynamics. Mössbauer spectroscopy on deoxymyoglobin crystals. J. Mol. Biol. 161, 177–194 (1982) [DOI] [PubMed]
  • 19.Nienhaus, G.U., Mourant, J.R., Chu, K., Frauenfelder, H.: Ligand binding to heme proteins: the effect of light on ligand binding in myoglobin. Biochemistry 33, 13413–13430 (1994) [DOI] [PubMed]
  • 20.Nienhaus, G.U., Nienhaus, K.: Infrared study of carbon monoxide migration among internal cavities of myoglobin mutant L29W. J. Biol. Phys. 28, 163–172 (2002) [DOI] [PMC free article] [PubMed]
  • 21.Nienhaus, K., Deng, P., Kriegl, J.M., Nienhaus, G.U.: Structural dynamics of myoglobin: The effect of internal cavities on ligand migration and binding. Biochemistry 42, 9647–9658 (2003) [DOI] [PubMed]
  • 22.Scott, E.E., Gibson, Q.H.: Ligand migration in sperm whale myoglobin. Biochemistry 36, 11909–11917 (1997) [DOI] [PubMed]
  • 23.Scott, E.E., Gibson, Q.H., Olson, J.S.: Mapping the pathways for O2 entry into and exit from myoglobin. J. Biol. Chem. 276, 5177–5188 (2001) [DOI] [PubMed]
  • 24.Bourgeois, D., Vallone, B., Schotte, F., Arcovito, A., Miele, A.E., Sciara, G., Wulff, M., Anfinrud, P., Brunori, M.: Complex landscape of protein structural dynamics unveiled by nanosecond Laue crystallography. Proc. Natl. Acad. Sci. U. S. A. 100, 8704–8709 (2003) [DOI] [PMC free article] [PubMed]
  • 25.Hartmann, H., Zinser, S., Komninos, P., Schneider, R.T., Nienhaus, G.U., Parak, F.: X-ray structure determination of a metastable state of carbonmonoxy myoglobin after photodissociation. Proc. Natl. Acad. Sci. U. S. A. 93, 7013–7016 (1996) [DOI] [PMC free article] [PubMed]
  • 26.Ostermann, A., Waschipky, R., Parak, F.G., Nienhaus, G.U.: Ligand binding and conformational motions in myoglobin. Nature 404, 205–208 (2000) [DOI] [PubMed]
  • 27.Schlichting, I., Berendzen, J., Phillips Jr., G.N., Sweet, R.M.: Crystal structure of photolysed carbonmonoxy-myoglobin. Nature 371, 808–812 (1994) [DOI] [PubMed]
  • 28.Schmidt, M., Nienhaus, K., Pahl, R., Krasselt, A., Anderson, S., Parak, F., Nienhaus, G.U., Srajer, V.: Ligand migration pathway and protein dynamics in myoglobin: a time-resolved crystallographic study on L29W MbCO. Proc. Natl. Acad. Sci. U. S. A. 102, 11704–11709 (2005) [DOI] [PMC free article] [PubMed]
  • 29.Schotte, F., Lim, M., Jackson, T.A., Smirnov, A.V., Soman, J., Olson, J.S., Phillips Jr., G.N., Wulff, M., Anfinrud, P.A.: Watching a protein as it functions with 150-ps time-resolved X-ray crystallography. Science 300, 1944–1947 (2003) [DOI] [PubMed]
  • 30.Teng, T.Y., Srajer, V., Moffat, K.: Photolysis-induced structural changes in single crystals of carbonmonoxy myoglobin at 40 K. Nat. Struct. Biol. 1, 701–705 (1994) [DOI] [PubMed]
  • 31.Perutz, M.F.: Myoglobin and haemoglobin: role of distal residues in reactions with haem ligands. Trends Biochem. Sci. 14, 42–44 (1989) [DOI] [PubMed]
  • 32.Johnson, K.A., Olson, J.S., Phillips Jr., G.N.: Structure of myoglobin-ethyl isocyanide. Histidine as a swinging door for ligand entry. J. Mol. Biol. 207, 459–463 (1989) [DOI] [PubMed]
  • 33.Tilton Jr., R.F., Kuntz Jr., I.D., Petsko, G.A.: Cavities in proteins: structure of a metmyoglobin-xenon complex solved to 1.9 Å. Biochemistry 23, 2849–2857 (1984) [DOI] [PubMed]
  • 34.Gibson, Q.H., Regan, R., Elber, R., Olson, J.S., Carver, T.E.: Distal pocket residues affect picosecond ligand recombination in myoglobin. An experimental and molecular dynamics study of position 29 mutants. J. Biol. Chem. 267, 22022–22034 (1992) [PubMed]
  • 35.Schotte, F., Soman, J., Olson, J.S., Wulff, M., Anfinrud, P.A.: Picosecond time-resolved X-ray crystallography: probing protein function in real time. J. Struct. Biol. 147, 235–246 (2004) [DOI] [PubMed]
  • 36.Li, T., Quillin, M.L., Phillips Jr., G.N., Olson, J.S.: Structural determinants of the stretching frequency of CO bound to myoglobin. Biochemistry 33, 1433–1446 (1994) [DOI] [PubMed]
  • 37.Nienhaus, K., Deng, P., Kriegl, J.M., Nienhaus, G.U.: Structural dynamics of myoglobin: Spectroscopic and structural characterization of ligand docking sites in myoglobin mutant L29W. Biochemistry 42, 9633–9646 (2003) [DOI] [PubMed]
  • 38.Brunori, M., Cutruzzola, F., Savino, C., Travaglini-Allocatelli, C., Vallone, B., Gibson, Q.H.: Structural dynamics of ligand diffusion in the protein matrix: A study on a new myoglobin mutant Y(B10) Q(E7) R(E10). Biophys. J. 76, 1259–1269 (1999) [DOI] [PMC free article] [PubMed]
  • 39.Nienhaus, K., Ostermann, A., Nienhaus, G.U., Parak, F.G., Schmidt, M.: Ligand migration and protein fluctuations in myoglobin mutant L29W. Biochemistry 44, 5095–5105 (2005) [DOI] [PubMed]
  • 40.Brunori, M., Vallone, B., Cutruzzola, F., Travaglini-Allocatelli, C., Berendzen, J., Chu, K., Sweet, R.M., Schlichting, I.: The role of cavities in protein dynamics: crystal structure of a photolytic intermediate of a mutant myoglobin. Proc. Natl. Acad. Sci. U. S. A. 97, 2058–2063 (2000) [DOI] [PMC free article] [PubMed]
  • 41.Kriegl, J.M., Bhattacharyya, A.J., Nienhaus, K., Deng, P., Minkow, O., Nienhaus, G.U.: Ligand binding and protein dynamics in neuroglobin. Proc. Natl. Acad. Sci. U. S. A. 99, 7992–7997 (2002) [DOI] [PMC free article] [PubMed]
  • 42.Nienhaus, K., Kriegl, J.M., Nienhaus, G.U.: Structural dynamics in the active site of murine neuroglobin and its effects on ligand binding. J. Biol. Chem. 279, 22944–22952 (2004) [DOI] [PubMed]
  • 43.Vallone, B., Nienhaus, K., Brunori, M., Nienhaus, G.U.: The structure of murine neuroglobin: novel pathways for ligand migration and binding. Proteins 56, 85–92 (2004) [DOI] [PubMed]
  • 44.Vallone, B., Nienhaus, K., Matthes, A., Brunori, M., Nienhaus, G.U.: The structure of carbonmonoxy neuroglobin reveals a heme-sliding mechanism for control of ligand affinity. Proc. Natl. Acad. Sci. U. S. A. 101, 17351–17356 (2004) [DOI] [PMC free article] [PubMed]
  • 45.Nienhaus, G.U., Chu, K., Jesse, K.: Structural heterogeneity and ligand binding in carbonmonoxy myoglobin crystals at cryogenic temperatures. Biochemistry 37, 6819–6823 (1998) [DOI] [PubMed]
  • 46.Alben, J.O., Beece, D., Bowne, S.F., Doster, W., Eisenstein, L., Frauenfelder, H., Good, D., McDonald, J.D., Marden, M.C., Moh, P.P., Reinisch, L., Reynolds, A.H., Shyamsunder, E., Yue, K.T.: Infrared spectroscopy of photodissociated carboxymyoglobin at low temperatures. Proc. Natl. Acad. Sci. U. S. A. 79, 3744–3748 (1982) [DOI] [PMC free article] [PubMed]
  • 47.Yang, F., Phillips Jr., G.N.: Crystal structures of CO-, deoxy- and met-myoglobins at various pH values. J. Mol. Biol. 256, 762–774 (1996) [DOI] [PubMed]
  • 48.Vojtechovsky, J., Chu, K., Berendzen, J., Sweet, R.M., Schlichting, I.: Crystal structures of myoglobin-ligand complexes at near-atomic resolution. Biophys. J. 77, 2153–2174 (1999) [DOI] [PMC free article] [PubMed]
  • 49.Lim, M., Jackson, T.A., Anfinrud, P.A.: Ultrafast rotation and trapping of carbon monoxide dissociated from myoglobin. Nat. Struct. Biol. 4, 209–214 (1997) [DOI] [PubMed]
  • 50.Kriegl, J.M., Nienhaus, K., Deng, P., Fuchs, J., Nienhaus, G.U.: Ligand dynamics in a protein internal cavity. Proc. Natl. Acad. Sci. U. S. A. 100, 7069–7074 (2003) [DOI] [PMC free article] [PubMed]
  • 51.Lehle, H., Kriegl, J.M., Nienhaus, K., Deng, P., Fengler, S., Nienhaus, G.U.: Probing electric fields in protein cavities by using the vibrational Stark effect of carbon monoxide. Biophys. J. 88, 1978–1990 (2005) [DOI] [PMC free article] [PubMed]
  • 52.Nienhaus, K., Olson, J.S., Franzen, S., Nienhaus, G.U.: The origin of Stark splitting in the initial photoproduct state of MbCO. J. Am. Chem. Soc. 127, 40–41 (2005) [DOI] [PubMed]
  • 53.Springer, B.A., Sligar, S.G.: High-level expression of sperm whale myoglobin in Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 84, 8961–8965 (1987) [DOI] [PMC free article] [PubMed]
  • 54.Nienhaus, K., Lamb, D.C., Deng, P., Nienhaus, G.U.: The effect of ligand dynamics on heme electronic transition band III in myoglobin. Biophys. J. 82, 1059–1067 (2002) [DOI] [PMC free article] [PubMed]
  • 55.Young, R.D., Frauenfelder, H., Johnson, J.B., Lamb, D.C., Nienhaus, G.U., Phillip, R., Scholl, R.: Time- and temperature dependence of large-scale conformational transitions in myoglobin. Chem. Phys. 158, 315–328 (1991) [DOI]
  • 56.Johnson, J.B., Lamb, D.C., Frauenfelder, H., Müller, J.D., McMahon, B., Nienhaus, G.U., Young, R.D.: Ligand binding to heme proteins. VI. Interconversion of taxonomic substates in carbonmonoxymyoglobin. Biophys. J. 71, 1563–1573 (1996) [DOI] [PMC free article] [PubMed]
  • 57.Parak, F., Heidemeier, J., Nienhaus, G.U.: Protein structural dynamics as determined by Mössbauer spectroscopy. Hyperfine Interact. 40, 147–158 (1988) [DOI]
  • 58.Chu, K., Ernst, R.M., Frauenfelder, H., Mourant, J.R., Nienhaus, G.U., Philipp, R.: Light-induced and thermal relaxation in a protein. Phys. Rev. Lett. 74, 2607–2610 (1995) [DOI] [PubMed]
  • 59.Berendzen, J., Braunstein, D.: Temperature-derivative spectroscopy: a tool for protein dynamics. Proc. Natl. Acad. Sci. U. S. A. 87, 1–5 (1990) [DOI] [PMC free article] [PubMed]
  • 60.Mourant, J.R., Braunstein, D.P., Chu, K., Frauenfelder, H., Nienhaus, G.U., Ormos, P., Young, R.D.: Ligand binding to heme proteins: II. Transitions in the heme pocket of myoglobin. Biophys. J. 65, 1496–1507 (1993) [DOI] [PMC free article] [PubMed]
  • 61.Ehrenstein, D., Nienhaus, G.U.: Conformational substates in azurin. Proc. Natl. Acad. Sci. U. S. A. 89, 9681–9685 (1992) [DOI] [PMC free article] [PubMed]
  • 62.Lamb, D.C., Nienhaus, K., Arcovito, A., Draghi, F., Miele, A.E., Brunori, M., Nienhaus, G.U.: Structural dynamics of myoglobin: ligand migration among protein cavities studied by Fourier transform infrared/temperature derivative spectroscopy. J. Biol. Chem. 277, 11636–11644 (2002) [DOI] [PubMed]
  • 63.Nienhaus, K., Maes, E.M., Weichsel, A., Montfort, W.R., Nienhaus, G.U.: Structural dynamics controls nitric oxide affinity in nitrophorin 4. J. Biol. Chem. 279, 39401–39407 (2004) [DOI] [PubMed]
  • 64.Phillips Jr., G.N., Teodoro, M.L., Li, T., Smith, B., Olson, J.S.: Bound CO is a molecular probe of electrostatic potential in the distal pocket of myoglobin. J. Phys. Chem. B 103, 8817–8829 (1999) [DOI]
  • 65.Ray, G.B., Li, X.-Y., Ibers, J.A., Sessler, J.L., Spiro, G.S.: How far can proteins bend the FeCO unit? Distal polar and steric effects in heme proteins and models. J. Am. Chem. Soc. 116, 162–176 (1994) [DOI]
  • 66.Vogel, K.M., Kozlowski, P.M., Zgierski, M.Z., Spiro, T.G.: Determinants of the FeXO (X = C, N, O) vibrational frequencies in heme adducts from experiment and density functional theory. J. Am. Chem. Soc. 121, 9915–9921 (1999) [DOI]
  • 67.Müller, J.D., McMahon, B.H., Chien, E.Y., Sligar, S.G., Nienhaus, G.U.: Connection between the taxonomic substates and protonation of histidines 64 and 97 in carbonmonoxy myoglobin. Biophys. J. 77, 1036–1051 (1999) [DOI] [PMC free article] [PubMed]
  • 68.Nienhaus, K., Nienhaus, G.U.: A spectroscopic study of structural heterogeneity and carbon monoxide binding in neuroglobin. J. Biol. Phys. 31, 417–432 (2005) [DOI] [PMC free article] [PubMed]
  • 69.Bredenbeck, J., Helbing, J., Nienhaus, K., Nienhaus, G.U., Hamm, P.: Multidimensional ultrafast spectroscopy special feature: Protein ligand migration mapped by nonequilibrium 2D-IR exchange spectroscopy. Proc. Natl. Acad. Sci. U. S. A. 104, 14243–14248 (2007) [DOI] [PMC free article] [PubMed]
  • 70.Campbell, B.F., Chance, M.R., Friedman, J.M.: Linkage of functional and structural heterogeneity in proteins: dynamic hole burning in carboxymyoglobin. Science 238, 373–376 (1987) [DOI] [PubMed]
  • 71.Ormos, P., Szaraz, S., Cupane, A., Nienhaus, G.U.: Structural factors controlling ligand binding to myoglobin: a kinetic hole-burning study. Proc. Natl. Acad. Sci. U. S. A. 95, 6762–6767 (1998) [DOI] [PMC free article] [PubMed]
  • 72.Brucker, E.A., Olson, J.S., Ikeda-Saito, M., Phillips Jr., G.N.: Nitric oxide myoglobin: crystal structure and analysis of ligand geometry. Proteins 30, 352–356 (1998) [DOI] [PubMed]

Articles from Journal of Biological Physics are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES