Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1982 May;42(2):422–431. doi: 10.1128/jvi.42.2.422-431.1982

Late events in T4 bacteriophage DNA replication. III. Specificity of DNA reinitiation as revealed by hybridization to cloned genetic fragments.

M Halpern, T Mattson, A W Kozinski
PMCID: PMC256868  PMID: 7086964

Abstract

Through the use of the technique of hybridization to cloned genes, the site specificity of the reinitiation of T4 DNA replication was examined at late times after infection, when a large amount of DNA had accumulated in the infected cell. Replication was examined under two conditions; (i) when there was recombination but the repair of the recombinants was inhibited, and (ii) when recombination was followed by covalent joining. When no covalent repair of recombinant was allowed, reinitiation occurred in the areas known to be also involved in the initiation of replication of the parental molecule: thus late reinitiation, if covalent joining is prevented, is site specific. When there was covalent joining, reinitiation displayed no apparent site specificity. The results are discussed in light of the possibility that at late times after infection recombinant intersections act as primers. The similarity of the model proposed to the "break-and-copy" model for lambda phage and the fitness of the proposed model to the genetic phenomena described by others are emphasized.

Full text

PDF
431

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Broker T. R., Doermann A. H. Molecular and genetic recombination of bacteriophage T4. Annu Rev Genet. 1975;9:213–244. doi: 10.1146/annurev.ge.09.120175.001241. [DOI] [PubMed] [Google Scholar]
  2. Broker T. R., Lehman I. R. Branched DNA molecules: intermediates in T4 recombination. J Mol Biol. 1971 Aug 28;60(1):131–149. doi: 10.1016/0022-2836(71)90453-0. [DOI] [PubMed] [Google Scholar]
  3. Delius H., Howe C., Kozinski A. W. Structure of the replicating DNA from bacteriophage T4. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3049–3053. doi: 10.1073/pnas.68.12.3049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Denhardt D. T. A membrane-filter technique for the detection of complementary DNA. Biochem Biophys Res Commun. 1966 Jun 13;23(5):641–646. doi: 10.1016/0006-291x(66)90447-5. [DOI] [PubMed] [Google Scholar]
  5. Halpern M. E., Mattson T., Kozinski A. W. Origins of phage T4 DNA replication as revealed by hybridization to cloned genes. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6137–6141. doi: 10.1073/pnas.76.12.6137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Howe C. C., Buckley P. J., Carlson K. M., Kozinski A. W. Multiple and specific initiation of T4 DNA replication. J Virol. 1973 Jul;12(1):130–148. doi: 10.1128/jvi.12.1.130-148.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hutchinson N., Kazic T., Lee S. J., Rayssiguier C., Emanuel B. S., Kozinski A. W. Late replication and recombination in the vegetative pool of T4. Cold Spring Harb Symp Quant Biol. 1979;43(Pt 1):517–523. doi: 10.1101/sqb.1979.043.01.057. [DOI] [PubMed] [Google Scholar]
  8. KOZINSKI A. W., KOZINSKI P. B. Fragmentary transfer of P32-labeled parental DNA to progeny phage. II. The average size of the transferred parental fragment. Two-cycletransfer. Repair of the polynucleotide chain after fragmentation. Virology. 1963 Jun;20:213–229. doi: 10.1016/0042-6822(63)90109-0. [DOI] [PubMed] [Google Scholar]
  9. KOZINSKI A. W., SZYBALSKI W. Dispersive transfer of the parental DNA molecule to the progeny of phage phiX-174. Virology. 1959 Oct;9:260–274. doi: 10.1016/0042-6822(59)90119-9. [DOI] [PubMed] [Google Scholar]
  10. Kosturko L. D., Kozinski A. W. Late events in T4 bacteriophage production. I. Late DNA replication is primarily exponential. J Virol. 1976 Mar;17(3):794–800. doi: 10.1128/jvi.17.3.794-800.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kozinski A. W., Doermann A. H., Kozinski P. B. Absence of interparental recombination in multiplicity reconstitution from incomplete bacteriophage T4 genomes. J Virol. 1976 Jun;18(3):873–884. doi: 10.1128/jvi.18.3.873-884.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kozinski A. W., Felgenhauer Z. Z. Molecular recombination in T4 bacteriophage deoxyribonucleic acid. II. Single-strand breaks and exposure of uncomplemented areas as a prerequisite for recombination. J Virol. 1967 Dec;1(6):1193–1202. doi: 10.1128/jvi.1.6.1193-1202.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kozinski A. W., Kosturko L. D. Late events in T4 bacteriophage production. II. Giant bacteriophages contain concatemers generated by recombination. J Virol. 1976 Mar;17(3):801–804. doi: 10.1128/jvi.17.3.801-804.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kozinski A. W., Kozinski P. B. Autonomous replication of short DNA fragments in the ligase negative T4 AM H39X. Biochem Biophys Res Commun. 1968 Nov 25;33(4):670–674. doi: 10.1016/0006-291x(68)90348-3. [DOI] [PubMed] [Google Scholar]
  15. Kozinski A. W., Kozinski P. B. Covalent repair of molecular recombinants in the ligase-negative amber mutant of T4 bacteriophage. J Virol. 1969 Jan;3(1):85–88. doi: 10.1128/jvi.3.1.85-88.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kozinski A. W., Kozinski P. B., James R. Molecular recombination in T4 bacteriophage deoxyribonucleic acid. I. Tertiary structure of early replicative and recombining deoxyribonucleic acid. J Virol. 1967 Aug;1(4):758–770. doi: 10.1128/jvi.1.4.758-770.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kozinski A. W., Lin T. H. Early intracellular events in the replication of T4 phage DNA. I. Complex formation of replicative DNA. Proc Natl Acad Sci U S A. 1965 Jul;54(1):273–278. doi: 10.1073/pnas.54.1.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kozinski A. W., Ling S. K., Hutchinson N., Halpern M. E., Mattson T. Differential amplification of specific areas of phage T4 genome as revealed by hybridization to cloned genetic segments. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5064–5068. doi: 10.1073/pnas.77.9.5064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ling S. K., Vogelbacker H. H., Restifo L. L., Mattson T., Kozinski A. W. Partial replication of UV-irradiated T4 bacteriophage DNA results in amplification of specific genetic areas. J Virol. 1981 Nov;40(2):403–410. doi: 10.1128/jvi.40.2.403-410.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mosig G. A preferred origin and direction of bacteriophage T4 DNA replication. I. A gradient of allele frequencies in crosses between normal and small T4 particles. J Mol Biol. 1970 Nov 14;53(3):503–514. doi: 10.1016/0022-2836(70)90080-x. [DOI] [PubMed] [Google Scholar]
  21. Mosig G., Luder A., Garcia G., Dannenberg R., Bock S. In vivo interactions of genes and proteins in DNA replication and recombination of phage T4. Cold Spring Harb Symp Quant Biol. 1979;43(Pt 1):501–515. doi: 10.1101/sqb.1979.043.01.056. [DOI] [PubMed] [Google Scholar]
  22. Nossal N. G., Peterlin B. M. DNA replication by bacteriophage T4 proteins. The T4 43, 32, 44--62, And 45 proteins are required for strand displacement synthesis at nicks in duplex DNA. J Biol Chem. 1979 Jul 10;254(13):6032–6037. [PubMed] [Google Scholar]
  23. Stahl F. W., McMilin K. D., Stahl M. M., Crasemann J. M., Lam S. The distribution of crossovers along unreplicated lambda bacteriophage chromosomes. Genetics. 1974 Jul;77(3):395–408. doi: 10.1093/genetics/77.3.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Stahl F. W., McMilin K. D., Stahl M. M., Nozu Y. An enhancing role for DNA synthesis in formation of bacteriophage lambda recombinants. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3598–3601. doi: 10.1073/pnas.69.12.3598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Young E. T., Mattson T., Selzer G., Van Houwe G., Bolle A., Epstein R. Bacteriophage T4 gene transcription studied by hybridization to cloned restriction fragments. J Mol Biol. 1980 Apr 15;138(3):423–445. doi: 10.1016/s0022-2836(80)80011-8. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES