Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1992 Sep;60(9):3475–3479. doi: 10.1128/iai.60.9.3475-3479.1992

The Th1/Th2-like switch in syphilitic infection: is it detrimental?

T J Fitzgerald 1
PMCID: PMC257347  PMID: 1386838

Abstract

Organisms that cause chronic diseases have evolved mechanisms to evade those immune defenses that resolve the acute stage of infection (10, 12-14, 21, 22, 32, 35, 37, 38, 40, 42, 45-49, 53). Much is to be learned by specifically identifying the mechanisms underlying these evasive strategies. Important new insights will emerge in terms of immunoregulatory pathways. This in turn will facilitate vaccine development. A good example is leishmania infection. The acute stage of this disease is resolved by DTH-macrophage activation. Leishmanial components preferentially activate Th2 lymphocytes. As a consequence, Th1 effects are minimized and infection is exacerbated leading to chronicity (10, 14, 32). To overcome this negative tendency, leishmanial vaccines are administered in combination with exogenous gamma interferon (42). This selects for Th1 predominance and generates protective immunity. Syphilis exhibits many parallels to the other nine chronic diseases mentioned above. Similarities include an acute localized stage that readily heals, early clearance via DTH-macrophage activation, transient concomitant immunity during acute infection, development of macrophage suppression through PGE2 down-regulation, beneficial effects of exogenous gamma interferon, and elements of autoimmunity. Some of the complexities of immunoregulation during treponemal infection have just begun to be unraveled. It will be important to develop further insight into the Th1/Th2 switch especially as it relates to chronicity. Macrophages seem to be intimately involved in the mechanics of this switch, and their specific role needs further clarification. Whatever is learned about syphilis, as well as other chronic infections will contribute to a better understanding of the generalized pathways of immunoregulation.

Full text

PDF
3475

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alderete J. F., Baseman J. B. Surface-associated host proteins on virulent Treponema pallidum. Infect Immun. 1979 Dec;26(3):1048–1056. doi: 10.1128/iai.26.3.1048-1056.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baker-Zander S. A., Lukehart S. A. Macrophage-mediated killing of opsonized Treponema pallidum. J Infect Dis. 1992 Jan;165(1):69–74. doi: 10.1093/infdis/165.1.69. [DOI] [PubMed] [Google Scholar]
  3. Baker P. J., Hiernaux J. R., Fauntleroy M. B., Stashak P. W., Prescott B., Cantrell J. L., Rudbach J. A. Ability of monophosphoryl lipid A to augment the antibody response of young mice. Infect Immun. 1988 Dec;56(12):3064–3066. doi: 10.1128/iai.56.12.3064-3066.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baker P. J. Regulation of magnitude of antibody response to bacterial polysaccharide antigens by thymus-derived lymphocytes. Infect Immun. 1990 Nov;58(11):3465–3468. doi: 10.1128/iai.58.11.3465-3468.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Baughn R. E. Demonstration and immunochemical characterization of natural, autologous anti-idiotypic antibodies throughout the course of experimental syphilis. Infect Immun. 1990 Mar;58(3):766–773. doi: 10.1128/iai.58.3.766-773.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Baughn R. E., Jorizzo J. L., Adams C. B., Musher D. M. Ig class and IgG subclass responses to Treponema pallidum in patients with syphilis. J Clin Immunol. 1988 Mar;8(2):128–139. doi: 10.1007/BF00917901. [DOI] [PubMed] [Google Scholar]
  7. Baughn R. E., Tung K. S., Musher D. M. Detection of circulating immune complexes in the sera of rabbits with experimental syphilis: possible role in immunoregulation. Infect Immun. 1980 Aug;29(2):575–582. doi: 10.1128/iai.29.2.575-582.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Betz M., Fox B. S. Prostaglandin E2 inhibits production of Th1 lymphokines but not of Th2 lymphokines. J Immunol. 1991 Jan 1;146(1):108–113. [PubMed] [Google Scholar]
  9. Bishop N. H., Miller J. N. Humoral immunity in experimental syphilis. I. The demonstration of resistance conferred by passive immunization. J Immunol. 1976 Jul;117(1):191–196. [PubMed] [Google Scholar]
  10. Boom W. H., Liebster L., Abbas A. K., Titus R. G. Patterns of cytokine secretion in murine leishmaniasis: correlation with disease progression or resolution. Infect Immun. 1990 Dec;58(12):3863–3870. doi: 10.1128/iai.58.12.3863-3870.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Borenstein L. A., Selsted M. E., Lehrer R. I., Miller J. N. Antimicrobial activity of rabbit leukocyte defensins against Treponema pallidum subsp. pallidum. Infect Immun. 1991 Apr;59(4):1359–1367. doi: 10.1128/iai.59.4.1359-1367.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Doyle A. G., Halliday W. J., Barnett C. J., Dunn T. L., Hume D. A. Effect of recombinant human macrophage colony-stimulating factor 1 on immunopathology of experimental brucellosis in mice. Infect Immun. 1992 Apr;60(4):1465–1472. doi: 10.1128/iai.60.4.1465-1472.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Edwards C. K., 3rd, Hedegaard H. B., Zlotnik A., Gangadharam P. R., Johnston R. B., Jr, Pabst M. J. Chronic infection due to Mycobacterium intracellulare in mice: association with macrophage release of prostaglandin E2 and reversal by injection of indomethacin, muramyl dipeptide, or interferon-gamma. J Immunol. 1986 Mar 1;136(5):1820–1827. [PubMed] [Google Scholar]
  14. Farrell J. P., Kirkpatrick C. E. Experimental cutaneous leishmaniasis. II. A possible role for prostaglandins in exacerbation of disease in Leishmania major-infected BALB/c mice. J Immunol. 1987 Feb 1;138(3):902–907. [PubMed] [Google Scholar]
  15. Fitzgerald T. J., Elmquist B. J. Soluble factors from rabbit spleen cells kill and lyse Treponema pallidum in vitro. Can J Microbiol. 1990 Oct;36(10):711–717. doi: 10.1139/m90-120. [DOI] [PubMed] [Google Scholar]
  16. Fitzgerald T. J. Syphilis vaccine: up-regulation of immunogenicity by cyclophosphamide, Ribi adjuvant, and indomethacin confers significant protection against challenge infection in rabbits. Vaccine. 1991 Apr;9(4):266–272. doi: 10.1016/0264-410x(91)90110-r. [DOI] [PubMed] [Google Scholar]
  17. Fitzgerald T. J., Tomai M. A. Splenic T-lymphocyte functions during early syphilitic infection are complex. Infect Immun. 1991 Nov;59(11):4180–4186. doi: 10.1128/iai.59.11.4180-4186.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Fitzgerald T. J., Tomai M. A., Trachte G. J., Rice T. Prostaglandins in experimental syphilis: treponemes stimulate adherent spleen cells to secrete prostaglandin E2, and indomethacin upregulates immune functions. Infect Immun. 1991 Jan;59(1):143–149. doi: 10.1128/iai.59.1.143-149.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gajewski T. F., Schell S. R., Fitch F. W. Evidence implicating utilization of different T cell receptor-associated signaling pathways by TH1 and TH2 clones. J Immunol. 1990 Jun 1;144(11):4110–4120. [PubMed] [Google Scholar]
  20. Hanff P. A., Bishop N. H., Miller J. N., Lovett M. A. Humoral immune response in experimental syphilis to polypeptides of Treponema pallidum. J Immunol. 1983 Oct;131(4):1973–1977. [PubMed] [Google Scholar]
  21. Jerrells T. R. Immunosuppression associated with the development of chronic infections with Rickettsia tsutsugamushi: adherent suppressor cell activity and macrophage activation. Infect Immun. 1985 Oct;50(1):175–182. doi: 10.1128/iai.50.1.175-182.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kierszenbaum F. Immunologic deficiency during experimental Chagas' disease (Trypanosoma cruzi infection): role of adherent, nonspecific esterase-positive splenic cells. J Immunol. 1982 Nov;129(5):2202–2205. [PubMed] [Google Scholar]
  23. Lukehart S. A. Activation of macrophages by products of lymphocytes from normal and syphilitic rabbits. Infect Immun. 1982 Jul;37(1):64–69. doi: 10.1128/iai.37.1.64-69.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lukehart S. A., Baker-Zander S. A., Lloyd R. M., Sell S. Characterization of lymphocyte responsiveness in early experimental syphilis. II. Nature of cellular infiltration and Treponema pallidum distribution in testicular lesions. J Immunol. 1980 Jan;124(1):461–467. [PubMed] [Google Scholar]
  25. Lukehart S. A., Baker-Zander S. A., Sell S. Characterization of lymphocyte responsiveness in early experimental syphilis. I. In vitro response to mitogens and Treponema pallidum antigens. J Immunol. 1980 Jan;124(1):454–460. [PubMed] [Google Scholar]
  26. Lukehart S. A., Miller J. N. Demonstration of the in vitro phagocytosis of Treponema pallidum by rabbit peritoneal macrophages. J Immunol. 1978 Nov;121(5):2014–2024. [PubMed] [Google Scholar]
  27. Lukehart S. A. Prospects for development of a treponemal vaccine. Rev Infect Dis. 1985 May-Jun;7 (Suppl 2):S305–S313. doi: 10.1093/clinids/7-supplement_2.s305. [DOI] [PubMed] [Google Scholar]
  28. MILLER J. N. THE APPEARANCE AND PERSISTENCE OF VDRL, RPCF, AND TPI ANTIBODY DURING THE COURSE AND TREATMENT OF EXPERIMENTAL SYPHILIS IN THE RABBIT. J Invest Dermatol. 1964 May;42:367–371. doi: 10.1038/jid.1964.80. [DOI] [PubMed] [Google Scholar]
  29. Miller J. N. Immunity in experimental syphilis. V. The immunogenicity of Treponema pallidum attenuated by gamma-irradiation. J Immunol. 1967 Nov;99(5):1012–1016. [PubMed] [Google Scholar]
  30. Miller J. N. Immunity in experimental syphilis. VI. Successful vaccination of rabbits with Treponema pallidum, Nichols strain, attenuated by -irradiation. J Immunol. 1973 May;110(5):1206–1215. [PubMed] [Google Scholar]
  31. Minakuchi R., Wacholtz M. C., Davis L. S., Lipsky P. E. Delineation of the mechanism of inhibition of human T cell activation by PGE2. J Immunol. 1990 Oct 15;145(8):2616–2625. [PubMed] [Google Scholar]
  32. Murray H. W., Stern J. J., Welte K., Rubin B. Y., Carriero S. M., Nathan C. F. Experimental visceral leishmaniasis: production of interleukin 2 and interferon-gamma, tissue immune reaction, and response to treatment with interleukin 2 and interferon-gamma. J Immunol. 1987 Apr 1;138(7):2290–2297. [PubMed] [Google Scholar]
  33. Musher D. M., Hague-Park M., Gyorkey F., Anderson D. C., Baughn R. E. The interaction between Treponema pallidum and human polymorphonuclear leukocytes. J Infect Dis. 1983 Jan;147(1):77–86. doi: 10.1093/infdis/147.1.77. [DOI] [PubMed] [Google Scholar]
  34. Pepose J. S., Bishop N. H., Feigenbaum S., Miller J. N., Zeltzer P. M. The humoral immune response in rabbits infected with Treponema pallidum: Comparison of antibody levels measured by the staphylococcal protein A-IgG (SPA-TP) microassay with VDRL, FTA-Abs, and TPI antibody responses during the development of acquired resistance to challenge. Sex Transm Dis. 1980 Jul-Sep;7(3):125–129. [PubMed] [Google Scholar]
  35. Piessens W. F., Ratiwayanto S., Tuti S., Palmieri J. H., Piessens P. W., Koiman I., Dennis D. T. Antigen-specific suppressor cells and suppressor factors in human filariasis with Brugia malayi. N Engl J Med. 1980 Apr 10;302(15):833–837. doi: 10.1056/NEJM198004103021503. [DOI] [PubMed] [Google Scholar]
  36. Podwińska J. Identification of cells producing anti-treponemal lymphotoxin (ATL). Arch Immunol Ther Exp (Warsz) 1987;35(1):63–70. [PubMed] [Google Scholar]
  37. Reed S. G. In vivo administration of recombinant IFN-gamma induces macrophage activation, and prevents acute disease, immune suppression, and death in experimental Trypanosoma cruzi infections. J Immunol. 1988 Jun 15;140(12):4342–4347. [PubMed] [Google Scholar]
  38. Reed S. G., Pihl D. L., Grabstein K. H. Immune deficiency in chronic Trypanosoma cruzi infection. Recombinant IL-1 restores Th function for antibody production. J Immunol. 1989 Mar 15;142(6):2067–2071. [PubMed] [Google Scholar]
  39. Rice M., Fitzgerald T. J. Detection and functional characterization of early appearing antibodies in rabbits with experimental syphilis. Can J Microbiol. 1985 Jan;31(1):62–67. doi: 10.1139/m85-013. [DOI] [PubMed] [Google Scholar]
  40. Rook G. A., Steele J., Ainsworth M., Champion B. R. Activation of macrophages to inhibit proliferation of Mycobacterium tuberculosis: comparison of the effects of recombinant gamma-interferon on human monocytes and murine peritoneal macrophages. Immunology. 1986 Nov;59(3):333–338. [PMC free article] [PubMed] [Google Scholar]
  41. Roper R. L., Conrad D. H., Brown D. M., Warner G. L., Phipps R. P. Prostaglandin E2 promotes IL-4-induced IgE and IgG1 synthesis. J Immunol. 1990 Oct 15;145(8):2644–2651. [PubMed] [Google Scholar]
  42. Scott P. IFN-gamma modulates the early development of Th1 and Th2 responses in a murine model of cutaneous leishmaniasis. J Immunol. 1991 Nov 1;147(9):3149–3155. [PubMed] [Google Scholar]
  43. Sell S., Baker-Zander S. A., Lloyd R. M. T-cell hyperplasia of lymphoid tissues of rabbits infected with Treponema pallidum: evidence for a vigorous immune response. Sex Transm Dis. 1980 Apr-Jun;7(2):74–84. doi: 10.1097/00007435-198004000-00009. [DOI] [PubMed] [Google Scholar]
  44. Sell S., Baker-Zander S., Powell H. C. Experimental syphilitic orchitis in rabbits: ultrastructural appearance of Treponema pallidum during phagocytosis and dissolution by macrophages in vivo. Lab Invest. 1982 Apr;46(4):355–364. [PubMed] [Google Scholar]
  45. Sher A., Fiorentino D., Caspar P., Pearce E., Mosmann T. Production of IL-10 by CD4+ T lymphocytes correlates with down-regulation of Th1 cytokine synthesis in helminth infection. J Immunol. 1991 Oct 15;147(8):2713–2716. [PubMed] [Google Scholar]
  46. Sibley L. D., Krahenbuhl J. L. Induction of unresponsiveness to gamma interferon in macrophages infected with Mycobacterium leprae. Infect Immun. 1988 Aug;56(8):1912–1919. doi: 10.1128/iai.56.8.1912-1919.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Silva J. S., Morrissey P. J., Grabstein K. H., Mohler K. M., Anderson D., Reed S. G. Interleukin 10 and interferon gamma regulation of experimental Trypanosoma cruzi infection. J Exp Med. 1992 Jan 1;175(1):169–174. doi: 10.1084/jem.175.1.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Stadecker M. J., Kamisato J. K., Chikunguwo S. M. Induction of T helper cell unresponsiveness to antigen by macrophages from schistosomal egg granulomas. A basis for immunomodulation in schistosomiasis? J Immunol. 1990 Oct 15;145(8):2697–2700. [PubMed] [Google Scholar]
  49. Todd C. W., Goodgame R. W., Colley D. G. Immune responses during human schistosomiasis mansoni. V. Suppression of schistosome antigen-specific lymphocyte blastogenesis by adherent/phagocytic cells. J Immunol. 1979 Apr;122(4):1440–1446. [PubMed] [Google Scholar]
  50. Tomai M. A., Elmquist B. J., Warmka S. M., Fitzgerald T. J. Macrophage-mediated suppression of con A-induced IL-2 production in spleen cells from syphilitic rabbits. J Immunol. 1989 Jul 1;143(1):309–314. [PubMed] [Google Scholar]
  51. Tomai M. A., Fitzgerald T. J. Splenic macrophage function in early syphilitic infection is complex. Stimulation versus down-regulation. J Immunol. 1991 May 1;146(9):3171–3176. [PubMed] [Google Scholar]
  52. Wicher V., Wicher K. Studies of rabbit testes infected with Treponema pallidum. III. Immunosuppressive activity of infiltrating mononuclear cells. Br J Vener Dis. 1984 Feb;60(1):1–7. doi: 10.1136/sti.60.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Xu Y. H., Macedonia J., Sher A., Pearce E., Cheever A. W. Dynamic analysis of splenic Th1 and Th2 lymphocyte functions in mice infected with Schistosoma japonicum. Infect Immun. 1991 Sep;59(9):2934–2940. doi: 10.1128/iai.59.9.2934-2940.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES