Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1990 Jun;58(6):1914–1918. doi: 10.1128/iai.58.6.1914-1918.1990

Opsonization of Cryptococcus neoformans by a family of isotype-switch variant antibodies specific for the capsular polysaccharide.

A M Schlageter 1, T R Kozel 1
PMCID: PMC258743  PMID: 2187813

Abstract

A family of immunoglobulin isotype-switch variants was isolated by sib selection from a murine hybridoma which produced an immunoglobulin G subclass 1 (IgG1) antibody specific for the capsular polysaccharide of Cryptococcus neoformans. Antibodies of the IgG1, IgG2a, and IgG2b isotypes had similar serotype specificity patterns in double immunodiffusion assays which used polysaccharides of the four cryptococcal serotypes as antigens. A quantitative difference in the ability of the isotypes to form a precipitate with the polysaccharide was observed in a double immunodiffusion assay and confirmed in a quantitative precipitin assay. The relative precipitating activity of the antibodies was IgG2a greater than IgG1 much greater than IgG2b. Analysis by enzyme-linked immunosorbent assay of the reactivity of the three isotypes with cryptococcal polysaccharide showed identical titers and slopes, suggesting that the variable region of the class-switch antibodies was unaltered. This system allowed us to examine the effect of the Fc portion of the antibody on opsonization of encapsulated cryptococci. Yeast cells were precoated with antibodies of each isotype and incubated with murine macrophages or cultured human monocytes. Antibodies of all three isotypes exhibited a dose-dependent opsonization for phagocytosis by both human and murine phagocytes. The relative opsonic activity of the antibodies was IgG2a greater than IgG1 greater than IgG2b.

Full text

PDF
1916

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agodoa L. Y., Gauthier V. J., Mannik M. Precipitating antigen-antibody systems are required for the formation of subepithelial electron-dense immune deposits in rat glomeruli. J Exp Med. 1983 Oct 1;158(4):1259–1271. doi: 10.1084/jem.158.4.1259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boot J. H., Geerts M. E., Aarden L. A. Functional polymorphisms of Fc receptors in human monocyte-mediated cytotoxicity towards erythrocytes induced by murine isotype switch variants. J Immunol. 1989 Feb 15;142(4):1217–1223. [PubMed] [Google Scholar]
  3. Butler J. E., Feldbush T. L., McGivern P. L., Stewart N. The enzyme-linked immunosorbent assay (ELISA): a measure of antibody concentration or affinity. Immunochemistry. 1978 Feb;15(2):131–136. doi: 10.1016/0161-5890(78)90053-6. [DOI] [PubMed] [Google Scholar]
  4. COHN Z. A., BENSON B. THE DIFFERENTIATION OF MONONUCLEAR PHAGOCYTES. MORPHOLOGY, CYTOCHEMISTRY, AND BIOCHEMISTRY. J Exp Med. 1965 Jan 1;121:153–170. doi: 10.1084/jem.121.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cosio F. G., Birmingham D. J., Sexton D. J., Hebert L. A. Interactions between precipitating and nonprecipitating antibodies in the formation of immune complexes. J Immunol. 1987 Apr 15;138(8):2587–2592. [PubMed] [Google Scholar]
  6. Dangl J. L., Parks D. R., Oi V. T., Herzenberg L. A. Rapid isolation of cloned isotype switch variants using fluorescence activated cell sorting. Cytometry. 1982 May;2(6):395–401. doi: 10.1002/cyto.990020607. [DOI] [PubMed] [Google Scholar]
  7. Diamond R. D., Bennett J. E. Prognostic factors in cryptococcal meningitis. A study in 111 cases. Ann Intern Med. 1974 Feb;80(2):176–181. doi: 10.7326/0003-4819-80-2-176. [DOI] [PubMed] [Google Scholar]
  8. Dromer F., Charreire J., Contrepois A., Carbon C., Yeni P. Protection of mice against experimental cryptococcosis by anti-Cryptococcus neoformans monoclonal antibody. Infect Immun. 1987 Mar;55(3):749–752. doi: 10.1128/iai.55.3.749-752.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Eckert T. F., Kozel T. R. Production and characterization of monoclonal antibodies specific for Cryptococcus neoformans capsular polysaccharide. Infect Immun. 1987 Aug;55(8):1895–1899. doi: 10.1128/iai.55.8.1895-1899.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ey P. L., Prowse S. J., Jenkin C. R. Isolation of pure IgG1, IgG2a and IgG2b immunoglobulins from mouse serum using protein A-sepharose. Immunochemistry. 1978 Jul;15(7):429–436. doi: 10.1016/0161-5890(78)90070-6. [DOI] [PubMed] [Google Scholar]
  11. Hirayama N., Hirano T., Köhler G., Kurata A., Okumura K., Ovary Z. Biological activities of antitrinitrophenyl and antidinitrophenyl mouse monoclonal antibodies. Proc Natl Acad Sci U S A. 1982 Jan;79(2):613–615. doi: 10.1073/pnas.79.2.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kipps T. J., Parham P., Punt J., Herzenberg L. A. Importance of immunoglobulin isotype in human antibody-dependent, cell-mediated cytotoxicity directed by murine monoclonal antibodies. J Exp Med. 1985 Jan 1;161(1):1–17. doi: 10.1084/jem.161.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kozel T. R., Follette J. L. Opsonization of encapsulated Cryptococcus neoformans by specific anticapsular antibody. Infect Immun. 1981 Mar;31(3):978–984. doi: 10.1128/iai.31.3.978-984.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kozel T. R., Hermerath C. A. Benzoquinone activation of Cryptococcus neoformans capsular polysaccharide for construction of an immunoaffinity column. J Immunol Methods. 1988 Feb 24;107(1):53–58. doi: 10.1016/0022-1759(88)90008-7. [DOI] [PubMed] [Google Scholar]
  15. Liesegang B., Radbruch A., Rajewsky K. Isolation of myeloma variants with predefined variant surface immunoglobulin by cell sorting. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3901–3905. doi: 10.1073/pnas.75.8.3901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lubeck M. D., Kimoto Y., Steplewski Z., Koprowski H. Killing of human tumor cell lines by human monocytes and murine monoclonal antibodies. Cell Immunol. 1988 Jan;111(1):107–117. doi: 10.1016/0008-8749(88)90055-x. [DOI] [PubMed] [Google Scholar]
  17. Mujoo K., Kipps T. J., Yang H. M., Cheresh D. A., Wargalla U., Sander D. J., Reisfeld R. A. Functional properties and effect on growth suppression of human neuroblastoma tumors by isotype switch variants of monoclonal antiganglioside GD2 antibody 14.18. Cancer Res. 1989 Jun 1;49(11):2857–2861. [PubMed] [Google Scholar]
  18. Møller N. P. Fc-mediated immune precipitation. I. A new role of the Fc-portion of IgG. Immunology. 1979 Nov;38(3):631–640. [PMC free article] [PubMed] [Google Scholar]
  19. Oi V. T., Vuong T. M., Hardy R., Reidler J., Dangle J., Herzenberg L. A., Stryer L. Correlation between segmental flexibility and effector function of antibodies. Nature. 1984 Jan 12;307(5947):136–140. doi: 10.1038/307136a0. [DOI] [PubMed] [Google Scholar]
  20. Preud'Homme J. L., Birshtein B. K., Scharff M. D. Variants of a mouse myeloma cell line that synthesize immunoglobulin heavy chains having an altered serotype. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1427–1430. doi: 10.1073/pnas.72.4.1427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Radbruch A., Liesegang B., Rajewsky K. Isolation of variants of mouse myeloma X63 that express changed immunoglobulin class. Proc Natl Acad Sci U S A. 1980 May;77(5):2909–2913. doi: 10.1073/pnas.77.5.2909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ralph P., Nakoinz I., Diamond B., Yelton D. All classes of murine IgG antibody mediate macrophage phagocytosis and lysis of erythrocytes. J Immunol. 1980 Nov;125(5):1885–1888. [PubMed] [Google Scholar]
  23. Rodwell J. D., Lih-Heng-Tang, Schumaker V. N. Antigen valence and Fc-localized secondary forces in antibody precipitation. Mol Immunol. 1980 Dec;17(12):1591–1597. doi: 10.1016/0161-5890(80)90185-6. [DOI] [PubMed] [Google Scholar]
  24. Sanford J. E., Lupan D. M., Schlageter A. M., Kozel T. R. Passive immunization against Cryptococcus neoformans with an isotype-switch family of monoclonal antibodies reactive with cryptococcal polysaccharide. Infect Immun. 1990 Jun;58(6):1919–1923. doi: 10.1128/iai.58.6.1919-1923.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Spira G., Bargellesi A., Teillaud J. L., Scharff M. D. The identification of monoclonal class switch variants by sib selection and an ELISA assay. J Immunol Methods. 1984 Nov 30;74(2):307–315. doi: 10.1016/0022-1759(84)90298-9. [DOI] [PubMed] [Google Scholar]
  26. Steplewski Z., Spira G., Blaszczyk M., Lubeck M. D., Radbruch A., Illges H., Herlyn D., Rajewsky K., Scharff M. Isolation and characterization of anti-monosialoganglioside monoclonal antibody 19-9 class-switch variants. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8653–8657. doi: 10.1073/pnas.82.24.8653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Vieira P., Rajewsky K. The half-lives of serum immunoglobulins in adult mice. Eur J Immunol. 1988 Feb;18(2):313–316. doi: 10.1002/eji.1830180221. [DOI] [PubMed] [Google Scholar]
  28. Wright S. D. Methods for the study of receptor-mediated phagocytosis. Methods Enzymol. 1986;132:204–221. doi: 10.1016/s0076-6879(86)32009-3. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES