Skip to main content
The Yale Journal of Biology and Medicine logoLink to The Yale Journal of Biology and Medicine
. 1974 Sep;47(3):148–154.

Effects of Circulating Red Cell Mass on Diet-Induced Atrial Thrombosis in Mice 1

Macon M Weaver, Allen D Ashburn
PMCID: PMC2595101  PMID: 4446627

Abstract

Atrial thrombosis is a common lesion in female Taconic Swiss mice fed a high-fat (28%), low-protein (8%), hypolipotropic diet for 10 wk or longer. After the third week of such feeding the mice studied here were injected with either erythropoietin, washed, packed red blood cells, lysed red blood cells, plasma or physiological saline.

In mice receiving injections of lysed red cells, plasma or saline, respectively 75, 54 and 82% of those surviving for 10 wk had developed atrial thrombosis. Hematocrits were 9.3% or below in these groups. Hematocrits were maintained at an average of 33.0% in the erythropoietin group and 32.4% in the transfused (packed erythrocytes) group. Only one of the erythropoietin injected animals and none of the transfused animals developed atrial thrombosis. The evidence indicates that the anemia induced by the experimental diet results from lack of erythropoietin production or activity and that the hypoxia of anemia plays a role in the development of atrial thrombosis.

Full text

PDF
152

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ASCHKENASY A. ETUDES SUR LA PRODUCTION D''ERYTHROPOUI'ETINE CHEZ LE RAT CARENC'E EN PROT'EINES. Rev Fr Etud Clin Biol. 1963 Dec;8:985–999. [PubMed] [Google Scholar]
  2. Ashburn A. D., Weaver M. M., Summers P. A. Effects of red blood cell injections in diet-induced atrial thrombosis in swiss mice. Am J Anat. 1972 Mar;133(3):341–347. doi: 10.1002/aja.1001330308. [DOI] [PubMed] [Google Scholar]
  3. BALL C. R. ACTIONS OF BETAINE, CARNITINE AND CHOLINE ON THE PATTERN OF HEPATIC LIPOSIS IN MICE FED A HIGH-FAT, LOW-PROTEIN DIET. Anat Rec. 1964 Aug;149:677–689. doi: 10.1002/ar.1091490411. [DOI] [PubMed] [Google Scholar]
  4. BROWN J. R., ALTSCHULER N., COOPER J. A. Erythropoietic effect of red blood cell components and heme-related compounds. Proc Soc Exp Biol Med. 1963 Apr;112:840–843. doi: 10.3181/00379727-112-28184. [DOI] [PubMed] [Google Scholar]
  5. Ball C. R., Clower B. R., Williams W. L. Dietary-induced atrial thrombosis in mice. Arch Pathol. 1965 Oct;80(4):391–396. [PubMed] [Google Scholar]
  6. Ball C. R. Hematologic studies of mice fed a thrombogenic diet. Arch Pathol. 1968 May;85(5):547–553. [PubMed] [Google Scholar]
  7. Ball C. R., Westin D. C. Anemia induced by thrombogenic diet and remission after normal diet. Arch Pathol. 1970 Aug;90(2):117–124. [PubMed] [Google Scholar]
  8. Christensen L. R., Macleod C. M. A PROTEOLYTIC ENZYME OF SERUM: CHARACTERIZATION, ACTIVATION, AND REACTION WITH INHIBITORS. J Gen Physiol. 1945 Jul 20;28(6):559–583. doi: 10.1085/jgp.28.6.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cotes P. M., Bangham D. R. The international reference preparation of erythropoietin. Bull World Health Organ. 1966;35(5):751–760. [PMC free article] [PubMed] [Google Scholar]
  10. ERSLEV A. J. Effect of erythropoietin on the uptake and utilization of iron by bone marrow cells in vitro. Proc Soc Exp Biol Med. 1962 Jul;110:615–620. doi: 10.3181/00379727-110-27596. [DOI] [PubMed] [Google Scholar]
  11. Gordon H., Sweets H. H. A Simple Method for the Silver Impregnation of Reticulum. Am J Pathol. 1936 Jul;12(4):545–552.1. [PMC free article] [PubMed] [Google Scholar]
  12. KRANTZ S. B., GALLIEN-LARTIGUE O., GOLDWASSER E. THE EFFECT OF ERYTHROPOIETIN UPON HEME SYNTHESIS BY MARROW CELLS IN VITRO. J Biol Chem. 1963 Dec;238:4085–4090. [PubMed] [Google Scholar]
  13. Krantz S. B., Goldwasser E. On the mechanism of erythropoietin-induced differentiation. IV. Some characteristics of erythropoietin action on hemoglobin synthesis in marrow cell culture. Biochim Biophys Acta. 1965 Nov 8;108(3):455–462. [PubMed] [Google Scholar]
  14. Okamura H., Udupa K. B., Reissmann K. R. On the mechanism of erythropoietic action of hemoglobin and its derivatives. Proc Soc Exp Biol Med. 1971 Mar;136(3):794–797. doi: 10.3181/00379727-136-35367. [DOI] [PubMed] [Google Scholar]
  15. REISSMANN K. R. PROTEIN METABOLISM AND ERYTHROPOIESIS. I. THE ANEMIA OF PROTEIN DEPRIVATION. Blood. 1964 Feb;23:137–145. [PubMed] [Google Scholar]
  16. SANCHEZ-MEDAL L., LABARDINI J., LORIA A. Hemolysis and erythropoiesis. I. Influence of intraperitoneal administration of whole hemolysates on the recovery of bled dogs, as measured by changes in the total erythrocytic volume. Blood. 1963 May;21:586–593. [PubMed] [Google Scholar]
  17. SHERRY S., FLETCHER A. P., ALKJAERSIG N. Fibrinolysis and fibrinolytic activity in man. Physiol Rev. 1959 Apr;39(2):343–382. doi: 10.1152/physrev.1959.39.2.343. [DOI] [PubMed] [Google Scholar]
  18. STOHLMAN F., Jr, HOWARD D., BELAND A. HUMORAL REGULATION OF ERYTHROPOIESIS. XII. EFFECT OF ERYTHROPOIETIN AND IRON ON CELL SIZE IN IRON DEFICIENCY ANEMIA. Proc Soc Exp Biol Med. 1963 Aug-Sep;113:986–988. doi: 10.3181/00379727-113-28552. [DOI] [PubMed] [Google Scholar]
  19. Thomas H. M., Jr, Williams W. L., Clower B. R. Cardiac lesions in C mice. Result of choline-deficient and choline-supplemented diets. Arch Pathol. 1968 May;85(5):532–538. [PubMed] [Google Scholar]
  20. Tymiński W., Czestochowska E. The fibrinolytic activity of red blood cells. Pol Med J. 1966;5(2):231–238. [PubMed] [Google Scholar]

Articles from The Yale Journal of Biology and Medicine are provided here courtesy of Yale Journal of Biology and Medicine

RESOURCES