Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1986 Nov;54(2):386–394. doi: 10.1128/iai.54.2.386-394.1986

Suppression of interleukin-2 production by macrophages in genetically susceptible mice infected with Leishmania major.

E Cillari, F Y Liew, R Lelchuk
PMCID: PMC260173  PMID: 3490440

Abstract

Spleen cells from BALB/c mice infected with 2 X 10(7) L. major promastigotes and developing progressive disease produced significantly lower levels of interleukin-2 (IL-2) in response to concanavalin A stimulation than did spleen cells from uninfected mice. In contrast, spleen cells from sublethally irradiated and infected mice, which were able to contain lesion development, produced significantly higher levels of IL-2. The increase in IL-2 production closely paralleled lesion regression. Mice protectively immunized by four intravenous injections with lethally irradiated promastigotes also produced enhanced levels of IL-2, which were sustained after challenge infection. In contrast, spleen cells from BALB/c mice given four s.c. injections of irradiated promastigotes produced high levels of IL-2 before but not after infection. These mice eventually produced levels of IL-2 indistinguishable from those of unimmunized mice with progressive disease. There is thus an inverse relation between disease progression and the ability of spleen cells to produce IL-2. Spleen cells from mice with uncontrolled disease not only produced lower levels of IL-2 but also impaired IL-2 production by normal spleen cells. The ability to inhibit IL-2 was abrogated by passing the cells through a Sephadex G-10 column, removal of plastic adherent cells, and removal of carbonyl iron-ingesting cells. Furthermore, Sephadex G-10 column-treated and plastic adherent, nonspecific esterase-positive spleen cells from mice with progressive disease were able to suppress IL-2 production by normal splenic T cells. The suppressive activity of the adherent cells was not affected by treatment with anti-Thy-1.2 antibody and complement. In contrast, adherent spleen cells from uninfected mice were devoid of such suppressor activity. The depressed IL-2 production by spleen cells from progressively infected mice could be restored to that of normal spleen cells by the addition of indomethacin to the culture. There was however, no correlation between IL-2 production and IL-1 activity in infected or immunized BALB/c mice. Thus, it appears that the suppression of IL-2 production is mediated by prostaglandins elaborated by macrophages from chronically infected mice.

Full text

PDF
388

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bullock W. E., Carlson E. M., Gershon R. K. The evolution of immunosuppressive cell populations in experimental mycobacterial infection. J Immunol. 1978 May;120(5):1709–1716. [PubMed] [Google Scholar]
  2. Chouaib S., Fradelizi D. The mechanism of inhibition of human IL 2 production. J Immunol. 1982 Dec;129(6):2463–2468. [PubMed] [Google Scholar]
  3. Elgert K. D., Farrar W. L. In vitro immune blastogenesis during contact sensitivity in tumor-bearing mice. I. Description of progressive impairment and demonstration of splenic suppressor cells. Cell Immunol. 1978 Oct;40(2):356–364. doi: 10.1016/0008-8749(78)90343-x. [DOI] [PubMed] [Google Scholar]
  4. Fierer J., Salmon J. A., Askonas B. A. African trypanosomiasis alters prostaglandin production by murine peritoneal macrophages. Clin Exp Immunol. 1984 Dec;58(3):548–556. [PMC free article] [PubMed] [Google Scholar]
  5. Folch H., Waksman B. H. The splenic suppressor cell. I. Activity of thymus-dependent adherent cells: changes with age and stress. J Immunol. 1974 Jul;113(1):127–139. [PubMed] [Google Scholar]
  6. Gillis S., Smith K. A., Watson J. Biochemical characterization of lymphocyte regulatory molecules. II. Purification of a class of rat and human lymphokines. J Immunol. 1980 Apr;124(4):1954–1962. [PubMed] [Google Scholar]
  7. Goodwin J. S., Webb D. R. Regulation of the immune response by prostaglandins. Clin Immunol Immunopathol. 1980 Jan;15(1):106–122. doi: 10.1016/0090-1229(80)90024-0. [DOI] [PubMed] [Google Scholar]
  8. Gorczynski R. M., MacRae S. Analysis of subpopulations of glass-adherent mouse skin cells controlling resistance/susceptibility to infection with Leishmania tropica, and correlation with the development of independent proliferative signals to Lyt-1+/Lyt-2+ T lymphocytes. Cell Immunol. 1982 Feb;67(1):74–89. doi: 10.1016/0008-8749(82)90200-3. [DOI] [PubMed] [Google Scholar]
  9. Hardt C., Röllinghoff M., Pfizenmaier K., Mosmann H., Wagner H. Lyt-23+ cyclophosphamide-sensitive T cells regulate the activity of an interleukin 2 inhibitor in vivo. J Exp Med. 1981 Aug 1;154(2):262–274. doi: 10.1084/jem.154.2.262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Harel-Bellan A., Joskowicz M., Fradelizi D., Eisen H. Modification of T-cell proliferation and interleukin 2 production in mice infected with Trypanosoma cruzi. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3466–3469. doi: 10.1073/pnas.80.11.3466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Howard J. G., Hale C., Liew F. Y. Immunological regulation of experimental cutaneous leishmaniasis. III. Nature and significance of specific suppression of cell-mediated immunity in mice highly susceptible to Leishmania tropica. J Exp Med. 1980 Sep 1;152(3):594–607. doi: 10.1084/jem.152.3.594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Howard J. G., Hale C., Liew F. Y. Immunological regulation of experimental cutaneous leishmaniasis. IV. Prophylactic effect of sublethal irradiation as a result of abrogation of suppressor T cell generation in mice genetically susceptible to Leishmania tropica. J Exp Med. 1981 Mar 1;153(3):557–568. doi: 10.1084/jem.153.3.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Howard J. G., Nicklin S., Hale C., Liew F. Y. Prophylactic immunization against experimental leishmaniasis: I. Protection induced in mice genetically vulnerable to fatal Leishmania tropica infection. J Immunol. 1982 Nov;129(5):2206–2212. [PubMed] [Google Scholar]
  14. Jayawardena A. N., Waksman B. H. Suppressor cells in experimentally trypanosomiasis. Nature. 1977 Feb 10;265(5594):539–541. doi: 10.1038/265539a0. [DOI] [PubMed] [Google Scholar]
  15. Kaye J., Porcelli S., Tite J., Jones B., Janeway C. A., Jr Both a monoclonal antibody and antisera specific for determinants unique to individual cloned helper T cell lines can substitute for antigen and antigen-presenting cells in the activation of T cells. J Exp Med. 1983 Sep 1;158(3):836–856. doi: 10.1084/jem.158.3.836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Klimpel G. R., Henney C. S. BCG-induced suppressor cells. I. Demonstration of a macrophage-like suppressor cell that inhibits cytotoxic T cell generation in vitro. J Immunol. 1978 Feb;120(2):563–569. [PubMed] [Google Scholar]
  17. Lafferty K. J., Prowse S. J., Al-Adra A., Warren H. S., Vasalli J., Reich E. An improved assay for interleukin 2 (lymphocyte growth factor) produced by mitogen-activated lymphocytes. Aust J Exp Biol Med Sci. 1980 Dec;58(6):533–544. doi: 10.1038/icb.1980.55. [DOI] [PubMed] [Google Scholar]
  18. Leclerc C., Modabber F., Deriaud E., Djoko-Tamnou J., Chedid L. Visceral Leishmania tropica infection of BALB/c mice: cellular analysis of in vitro unresponsiveness to sheep erythrocytes. Infect Immun. 1982 Sep;37(3):895–902. doi: 10.1128/iai.37.3.895-902.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lelchuk R., Playfair J. H. Serum IL-2 inhibitor in mice. I. Increase during infection. Immunology. 1985 Sep;56(1):113–118. [PMC free article] [PubMed] [Google Scholar]
  20. Lelchuk R., Rose G., Playfair J. H. Changes in the capacity of macrophages and T cells to produce interleukins during murine malaria infection. Cell Immunol. 1984 Apr 1;84(2):253–263. doi: 10.1016/0008-8749(84)90097-2. [DOI] [PubMed] [Google Scholar]
  21. Liew F. Y., Hale C., Howard J. G. Immunologic regulation of experimental cutaneous leishmaniasis. V. Characterization of effector and specific suppressor T cells. J Immunol. 1982 Apr;128(4):1917–1922. [PubMed] [Google Scholar]
  22. Liew F. Y., Hale C., Howard J. G. Prophylactic immunization against experimental leishmaniasis. IV. Subcutaneous immunization prevents the induction of protective immunity against fatal Leishmania major infection. J Immunol. 1985 Sep;135(3):2095–2101. [PubMed] [Google Scholar]
  23. Liew F. Y., Howard J. G., Hale C. Prophylactic immunization against experimental leishmaniasis. III. Protection against fatal Leishmania tropica infection induced by irradiated promastigotes involves Lyt-1+2- T cells that do not mediate cutaneous DTH. J Immunol. 1984 Jan;132(1):456–461. [PubMed] [Google Scholar]
  24. Liew F. Y., Howard J. G. Role of T cells in the unusual cutaneous responses to Leishmania in BALB/c mice. Curr Top Microbiol Immunol. 1985;122:122–127. doi: 10.1007/978-3-642-70740-7_18. [DOI] [PubMed] [Google Scholar]
  25. Liew F. Y., Singleton A., Cillari E., Howard J. G. Prophylactic immunization against experimental leishmaniasis. V. Mechanism of the anti-protective blocking effect induced by subcutaneous immunization against Leishmania major infection. J Immunol. 1985 Sep;135(3):2102–2107. [PubMed] [Google Scholar]
  26. Ly I. A., Mishell R. I. Separation of mouse spleen cells by passage through columns of sephadex G-10. J Immunol Methods. 1974 Aug;5(3):239–247. doi: 10.1016/0022-1759(74)90108-2. [DOI] [PubMed] [Google Scholar]
  27. Malkovsky M., Asherson G. L., Stockinger B., Watkins M. C. Nonspecific inhibitor released by T acceptor cells reduces the production of interleukin-2. Nature. 1982 Dec 16;300(5893):652–655. doi: 10.1038/300652a0. [DOI] [PubMed] [Google Scholar]
  28. Mirkovich A. M., Galelli A., Allison A. C., Modabber F. Z. Increased myelopoiesis during Leishmania major infection in mice: generation of 'safe targets', a possible way to evade the effector immune mechanism. Clin Exp Immunol. 1986 Apr;64(1):1–7. [PMC free article] [PubMed] [Google Scholar]
  29. Mitchell G. F., Handman E., Spithill T. W. Vaccination against cutaneous leishmaniasis in mice using nonpathogenic cloned promastigotes of Leishmania major and importance of route of injection. Aust J Exp Biol Med Sci. 1984 Apr;62(Pt 2):145–153. doi: 10.1038/icb.1984.14. [DOI] [PubMed] [Google Scholar]
  30. Mohagheghpour N., Gelber R. H., Larrick J. W., Sasaki D. T., Brennan P. J., Engleman E. G. Defective cell-mediated immunity in leprosy: failure of T cells from lepromatous leprosy patients to respond to Mycobacterium leprae is associated with defective expression of interleukin 2 receptors and is not reconstituted by interleukin 2. J Immunol. 1985 Aug;135(2):1443–1449. [PubMed] [Google Scholar]
  31. Pearson T. W., Roelants G. E., Pinder M., Lundin L. B., Mayor-Withey K. S. Immune depression in trypanosome-infected mice. III. suppressor cells. Eur J Immunol. 1979 Mar;9(3):200–204. doi: 10.1002/eji.1830090306. [DOI] [PubMed] [Google Scholar]
  32. Pfizenmaier K., Scheurich P., Däubener W., Krönke M., Röllinghoff M., Wagner H. Quantitative representation of all T cells committed to develop into cytotoxic effector cells and/or interleukin 2 activity-producing helper cells within murine T lymphocyte subsets. Eur J Immunol. 1984 Jan;14(1):33–39. doi: 10.1002/eji.1830140107. [DOI] [PubMed] [Google Scholar]
  33. Rappaport R. S., Dodge G. R. Prostaglandin E inhibits the production of human interleukin 2. J Exp Med. 1982 Mar 1;155(3):943–948. doi: 10.1084/jem.155.3.943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Reiner N. E., Finke J. H. Interleukin 2 deficiency in murine Leishmaniasis donovani and its relationship to depressed spleen cell responses to phytohemagglutinin. J Immunol. 1983 Sep;131(3):1487–1491. [PubMed] [Google Scholar]
  35. Scott P. A., Farrell J. P. Experimental cutaneous leishmaniasis. I. Nonspecific immunodepression in BALB/c mice infected with Leishmania tropica. J Immunol. 1981 Dec;127(6):2395–2400. [PubMed] [Google Scholar]
  36. Smith K. A., Lachman L. B., Oppenheim J. J., Favata M. F. The functional relationship of the interleukins. J Exp Med. 1980 Jun 1;151(6):1551–1556. doi: 10.1084/jem.151.6.1551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Smith K. A. T-cell growth factor. Immunol Rev. 1980;51:337–357. doi: 10.1111/j.1600-065x.1980.tb00327.x. [DOI] [PubMed] [Google Scholar]
  38. Titus R. G., Ceredig R., Cerottini J. C., Louis J. A. Therapeutic effect of anti-L3T4 monoclonal antibody GK1.5 on cutaneous leishmaniasis in genetically-susceptible BALB/c mice. J Immunol. 1985 Sep;135(3):2108–2114. [PubMed] [Google Scholar]
  39. Tucker S. B., Pierre R. V., Jordon R. E. Rapid identification of monocytes in a mixed mononuclear cell preparation. J Immunol Methods. 1977;14(3-4):267–269. doi: 10.1016/0022-1759(77)90137-5. [DOI] [PubMed] [Google Scholar]
  40. Watson S. R., Schmitt S. K., Hendricks D. E., Bullock W. E. Immunoregulation in disseminated murine histoplasmosis: disturbances in the production of interleukins 1 and 2. J Immunol. 1985 Nov;135(5):3487–3493. [PubMed] [Google Scholar]
  41. Wyler D. J., Oppenheim J. J., Koontz L. C. Influence of malaria infection on the elaboration of soluble mediators by adherent mononuclear cells. Infect Immun. 1979 Apr;24(1):151–159. doi: 10.1128/iai.24.1.151-159.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES