Abstract
Macrophage (M phi)-activating lymphokines present in concanavalin A-stimulated bovine T-lymphocyte cultures (ConAS) were studied by assessing their effects on Eimeria bovis and Toxoplasma gondii growth in cultured bovine monocytes (BM) and mouse M phi. The in vitro development of both parasites was assessed by incorporation of [3H]uracil and by microscopic examination of parallel cultures. Incorporation of [3H]uracil into infected cultures was an accurate indicator of growth of both E. bovis and T. gondii in BM and mouse M phi. Sporozoites of E. bovis underwent merogony in untreated BM but not in mouse M phi, whereas T. gondii developed in both cell types. Inhibition of T. gondii growth was greatest in ConAS-treated BM, whereas preincubation of mouse M phi with ConAS resulted in about 80% growth inhibition. There was no significant difference between the inhibition of either T. gondii sporozoite- or tachyzoite-induced growth in ConAS-treated cells, showing that activation pathways are equally effective against both stages. Treatment of ConAS with glycine-hydrochloride buffer (pH 2) resulted in a total loss of antiviral activity mediated by gamma interferon (IFN-gamma). When pH 2 dialyzed ConAS was used to activate BM, inhibition of T. gondii growth was only partially affected. Because bovine IFN-gamma does not activate mouse M phi and due to the partial effects of pH 2 on ConAS-induced growth inhibition, the major component(s) of ConAS responsible for T. gondii growth inhibition is distinct from IFN-gamma. Furthermore, IFN-gamma may act synergistically rather than being part of a priming sequence for M phi responsiveness to other lymphokines. Murine recombinant granulocyte-macrophage colony-stimulating factor (rGM-CSF) was tested for any microbistatic activity against T. gondii sporozoites and tachyzoites. There was no significant difference in either colony formation or [3H]uracil incorporation between rGM-CSF-treated and control cultures, regardless of host cell type. Thus, rGM-CSF does not induce adequate M phi activation to kill T. gondii and is not a major microbistatic component of ConAS. rGM-CSF also had no effect on T. gondii infection in vivo.
Full text
PDF![784](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c32/260411/95a9692763f2/iai00087-0296.png)
![785](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c32/260411/fce53c1ec658/iai00087-0297.png)
![786](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c32/260411/f0d3ffd091f5/iai00087-0298.png)
![787](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c32/260411/bc3f0a80b8e9/iai00087-0299.png)
![788](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c32/260411/2a828cfb7bd4/iai00087-0300.png)
![789](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c32/260411/043d59af9f48/iai00087-0301.png)
![790](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c32/260411/bfacac735ba6/iai00087-0302.png)
![791](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c32/260411/0052a2463b01/iai00087-0303.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson S. E., Bautista S., Remington J. S. Induction of resistance to Toxoplasma gondii in human macrophages by soluble lymphocyte products. J Immunol. 1976 Aug;117(2):381–387. [PubMed] [Google Scholar]
- Borges J. S., Johnson W. D., Jr Inhibition of multiplication of Toxoplasma gondii by human monocytes exposed to T-lymphocyte products. J Exp Med. 1975 Feb 1;141(2):483–496. doi: 10.1084/jem.141.2.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Christie E., Pappas P. W., Dubey J. P. Ultrastructure of excystment of Toxoplasma gondii oocysts. J Protozool. 1978 Nov;25(4):438–443. doi: 10.1111/j.1550-7408.1978.tb04166.x. [DOI] [PubMed] [Google Scholar]
- Dubey J. P., Murrell K. D., Fayer R., Schad G. A. Distribution of Toxoplasma gondii tissue cysts in commercial cuts of pork. J Am Vet Med Assoc. 1986 May 1;188(9):1035–1037. [PubMed] [Google Scholar]
- Frenkel J. K., Dubey J. P., Hoff R. L. Loss of stages after continuous passage of Toxoplasma gondii and Besnoitia jellisoni. J Protozool. 1976 Aug;23(3):421–424. doi: 10.1111/j.1550-7408.1976.tb03799.x. [DOI] [PubMed] [Google Scholar]
- Grabstein K. H., Urdal D. L., Tushinski R. J., Mochizuki D. Y., Price V. L., Cantrell M. A., Gillis S., Conlon P. J. Induction of macrophage tumoricidal activity by granulocyte-macrophage colony-stimulating factor. Science. 1986 Apr 25;232(4749):506–508. doi: 10.1126/science.3083507. [DOI] [PubMed] [Google Scholar]
- Grimwood B. G. Viral contamination of a subline of Toxoplasma gondii RH. Infect Immun. 1985 Dec;50(3):917–918. doi: 10.1128/iai.50.3.917-918.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoover D. L., Finbloom D. S., Crawford R. M., Nacy C. A., Gilbreath M., Meltzer M. S. A lymphokine distinct from interferon-gamma that activates human monocytes to kill Leishmania donovani in vitro. J Immunol. 1986 Feb 15;136(4):1329–1333. [PubMed] [Google Scholar]
- Hughes H. P., Van Knapen F., Atkinson H. J., Balfour A. H., Lee D. L. A new soluble antigen preparation of Toxoplasma gondii and its use in serological diagnosis. Clin Exp Immunol. 1982 Jul;49(1):239–246. [PMC free article] [PubMed] [Google Scholar]
- Kasper L. H., Bradley M. S., Pfefferkorn E. R. Identification of stage-specific sporozoite antigens of Toxoplasma gondii by monoclonal antibodies. J Immunol. 1984 Jan;132(1):443–449. [PubMed] [Google Scholar]
- McCabe R. E., Luft B. J., Remington J. S. Effect of murine interferon gamma on murine toxoplasmosis. J Infect Dis. 1984 Dec;150(6):961–962. doi: 10.1093/infdis/150.6.961. [DOI] [PubMed] [Google Scholar]
- McLeod R., Remington J. S. A method to evaluate the capacity of monocytes and macrophages to inhibit multiplication of an intracellular pathogen. J Immunol Methods. 1979 May 10;27(1):19–29. doi: 10.1016/0022-1759(79)90235-7. [DOI] [PubMed] [Google Scholar]
- Murray H. W., Rubin B. Y., Rothermel C. D. Killing of intracellular Leishmania donovani by lymphokine-stimulated human mononuclear phagocytes. Evidence that interferon-gamma is the activating lymphokine. J Clin Invest. 1983 Oct;72(4):1506–1510. doi: 10.1172/JCI111107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pace J. L., Russell S. W., Torres B. A., Johnson H. M., Gray P. W. Recombinant mouse gamma interferon induces the priming step in macrophage activation for tumor cell killing. J Immunol. 1983 May;130(5):2011–2013. [PubMed] [Google Scholar]
- Park L. S., Friend D., Gillis S., Urdal D. L. Characterization of the cell surface receptor for granulocyte-macrophage colony-stimulating factor. J Biol Chem. 1986 Mar 25;261(9):4177–4183. [PubMed] [Google Scholar]
- Pfefferkorn E. R. Interferon gamma blocks the growth of Toxoplasma gondii in human fibroblasts by inducing the host cells to degrade tryptophan. Proc Natl Acad Sci U S A. 1984 Feb;81(3):908–912. doi: 10.1073/pnas.81.3.908. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Remington J. S., Krahenbuhl J. L., Mendenhall J. W. A role for activated macrophages in resistance to infection with Toxoplasma. Infect Immun. 1972 Nov;6(5):829–834. doi: 10.1128/iai.6.5.829-834.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sakurai H., Takei Y., Omata Y., Suzuki N. Production and properties of Toxoplasma growth inhibitory factor (Toxo-GIF) and interferon (IFN) in the lymphokines and the circulation of Toxoplasma immune mice. Zentralbl Bakteriol Mikrobiol Hyg A. 1981 Dec;251(1):134–143. [PubMed] [Google Scholar]
- Shirahata T., Shimizu K. Some physicochemical characteristics of an immune lymphocyte product which inhibits the multiplication of toxoplasma within mouse macrophages. Microbiol Immunol. 1979;23(1):17–30. doi: 10.1111/j.1348-0421.1979.tb00436.x. [DOI] [PubMed] [Google Scholar]
- Speer C. A., Reduker D. W., Burgess D. E., Whitmire W. M., Splitter G. A. Lymphokine-induced inhibition of growth of Eimeria bovis and Eimeria papillata (Apicomplexa) in cultured bovine monocytes. Infect Immun. 1985 Nov;50(2):566–571. doi: 10.1128/iai.50.2.566-571.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson C. B., Westall J. Activation of neonatal and adult human macrophages by alpha, beta, and gamma interferons. Infect Immun. 1985 Aug;49(2):351–356. doi: 10.1128/iai.49.2.351-356.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]