Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1987 Aug;55(8):1873–1877. doi: 10.1128/iai.55.8.1873-1877.1987

Purification of Clostridium difficile toxin A by affinity chromatography on immobilized thyroglobulin.

H C Krivan, T D Wilkins
PMCID: PMC260617  PMID: 3112015

Abstract

An efficient, single-step method for isolating highly purified toxin A from Clostridium difficile culture filtrates is described. The purification procedure was based on the affinity binding and release of toxin A to bovine thyroglobulin conjugated to agarose beads. The toxin strongly bound at 4 degrees C to the carbohydrate binding determinant Gal alpha 1-3Gal beta 1-4GlcNAc, a carbohydrate sequence which occurs on bovine thyroglobulin. Toxin bound to thyroglobulin at 4 degrees C, allowing its separation from the culture filtrate and contaminating proteins during the purification scheme. The toxin was eluted by increasing the temperature to 37 degrees C. The toxin-binding capacity was related to the amount of thyroglobulin immobilized on the gel: an affinity column containing 15 mg of bovine thyroglobulin per ml of gel bound 0.53 mg of toxin A per ml of gel. The percent recovery of purified toxin ranged from 56 to 80% and was inversely related to the amount of thyroglobulin coupled to the gel. The affinity-purified toxin was homogeneous as judged by crossed immunoelectrophoresis and gradient polyacrylamide gel electrophoresis and was immunologically identical to toxin A purified by conventional methods as determined by immunodiffusion analysis. The biochemical, hemagglutinating, and toxic properties of the toxin were preserved after affinity chromatography and were comparable with those of toxin A purified by conventional methods.

Full text

PDF
1875

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banno Y., Kobayashi T., Kono H., Watanabe K., Ueno K., Nozawa Y. Biochemical characterization and biologic actions of two toxins (D-1 and D-2) from Clostridium difficile. Rev Infect Dis. 1984 Mar-Apr;6 (Suppl 1):S11–S20. doi: 10.1093/clinids/6.supplement_1.s11. [DOI] [PubMed] [Google Scholar]
  2. Bartlett J. G., Chang T. W., Gurwith M., Gorbach S. L., Onderdonk A. B. Antibiotic-associated pseudomembranous colitis due to toxin-producing clostridia. N Engl J Med. 1978 Mar 9;298(10):531–534. doi: 10.1056/NEJM197803092981003. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Donta S. T., Sullivan N., Wilkins T. D. Differential effects of Clostridium difficile toxins on tissue-cultured cells. J Clin Microbiol. 1982 Jun;15(6):1157–1158. doi: 10.1128/jcm.15.6.1157-1158.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ehrich M., Van Tassell R. L., Libby J. M., Wilkins T. D. Production of Clostridium difficile antitoxin. Infect Immun. 1980 Jun;28(3):1041–1043. doi: 10.1128/iai.28.3.1041-1043.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hanfland P., Egge H., Dabrowski U., Kuhn S., Roelcke D., Dabrowski J. Isolation and characterization of an I-active ceramide decasaccharide from rabbit erythrocyte membranes. Biochemistry. 1981 Sep 1;20(18):5310–5319. doi: 10.1021/bi00521a034. [DOI] [PubMed] [Google Scholar]
  7. Krivan H. C., Clark G. F., Smith D. F., Wilkins T. D. Cell surface binding site for Clostridium difficile enterotoxin: evidence for a glycoconjugate containing the sequence Gal alpha 1-3Gal beta 1-4GlcNAc. Infect Immun. 1986 Sep;53(3):573–581. doi: 10.1128/iai.53.3.573-581.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Larson H. E., Price A. B. Pseudomembranous colitis: Presence of clostridial toxin. Lancet. 1977 Dec 24;2(8052-8053):1312–1314. doi: 10.1016/s0140-6736(77)90363-4. [DOI] [PubMed] [Google Scholar]
  9. Lyerly D. M., Lockwood D. E., Richardson S. H., Wilkins T. D. Biological activities of toxins A and B of Clostridium difficile. Infect Immun. 1982 Mar;35(3):1147–1150. doi: 10.1128/iai.35.3.1147-1150.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lyerly D. M., Saum K. E., MacDonald D. K., Wilkins T. D. Effects of Clostridium difficile toxins given intragastrically to animals. Infect Immun. 1985 Feb;47(2):349–352. doi: 10.1128/iai.47.2.349-352.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lyerly D. M., Sullivan N. M., Wilkins T. D. Enzyme-linked immunosorbent assay for Clostridium difficile toxin A. J Clin Microbiol. 1983 Jan;17(1):72–78. doi: 10.1128/jcm.17.1.72-78.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lönnroth I., Lange S. Toxin A of Clostridium difficile: production, purification and effect in mouse intestine. Acta Pathol Microbiol Immunol Scand B. 1983 Dec;91(6):395–400. doi: 10.1111/j.1699-0463.1983.tb00066.x. [DOI] [PubMed] [Google Scholar]
  13. Rihn B., Scheftel J. M., Girardot R., Monteil H. A new purification procedure for Clostridium difficile enterotoxin. Biochem Biophys Res Commun. 1984 Nov 14;124(3):690–695. doi: 10.1016/0006-291x(84)91013-1. [DOI] [PubMed] [Google Scholar]
  14. STERNE M., WENTZEL L. M. A new method for the large-scale production of high-titre botulinum formol-toxoid types C and D. J Immunol. 1950 Aug;65(2):175–183. [PubMed] [Google Scholar]
  15. Spiro R. G., Bhoyroo V. D. Occurrence of alpha-D-galactosyl residues in the thyroglobulins from several species. Localization in the saccharide chains of the complex carbohydrate units. J Biol Chem. 1984 Aug 10;259(15):9858–9866. [PubMed] [Google Scholar]
  16. Stephen J., Redmond S. C., Mitchell T. J., Ketley J., Candy D. C., Burdon D. W., Daniel R. Clostridium difficile enterotoxin (toxin A): new results. Biochem Soc Trans. 1984 Apr;12(2):194–195. doi: 10.1042/bst0120194. [DOI] [PubMed] [Google Scholar]
  17. Sullivan N. M., Pellett S., Wilkins T. D. Purification and characterization of toxins A and B of Clostridium difficile. Infect Immun. 1982 Mar;35(3):1032–1040. doi: 10.1128/iai.35.3.1032-1040.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Taylor N. S., Thorne G. M., Bartlett J. G. Comparison of two toxins produced by Clostridium difficile. Infect Immun. 1981 Dec;34(3):1036–1043. doi: 10.1128/iai.34.3.1036-1043.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Tsai C. M., Zopf D. A., Ginsburg V. The molecular basis for cold agglutination: effect of receptor density upon thermal amplitude of a cold agglutinin. Biochem Biophys Res Commun. 1978 Feb 28;80(4):905–910. doi: 10.1016/0006-291x(78)91330-x. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES