Skip to main content
Journal of the National Medical Association logoLink to Journal of the National Medical Association
. 1990 Apr;82(4):249–254.

Creatine kinase: race-gender differences in patients hospitalized for suspected myocardial infarction.

J C Cook 1, E Wong 1, L J Haywood 1
PMCID: PMC2626127  PMID: 2185368

Abstract

Race-gender differences in creatine kinase values were studied in 647 consecutive patients admitted for suspected myocardial infarction. The lowest value in a serial set for each patient was used for group comparisons. Significant differences were found between Hispanic females and black males, using standard values. Using log creatine kinase values, significant differences were found among blacks, Caucasians, and Hispanics. Males had higher log creatine kinase values than females, but no differences were found between sexes within racial groups. Body surface area differences (significant between males and females) did not explain all of the racial-gender differences found. Reexamination of ranges of normality, taking into account race-gender differences, is strongly supported by these data.

Full text

PDF
251

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amrit A. N., Anderson M. S. Serum creatine phosphokinase in amyotrophic lateral sclerosis. Correlation with sex, duration, and skeletal muscle biopsy. Neurology. 1974 Sep;24(9):834–837. doi: 10.1212/wnl.24.9.834. [DOI] [PubMed] [Google Scholar]
  2. Bauman D. J. Creatine phosphokinase isoenzymes and the diagnosis of myocardial infarction. Postgrad Med. 1980 Jan;67(1):103-6, 109-12, 115-6. doi: 10.1080/00325481.1980.11715341. [DOI] [PubMed] [Google Scholar]
  3. Bigger J. T., Heller C. A., Wenger T. L., Weld F. M. Risk stratification after acute myocardial infarction. Am J Cardiol. 1978 Aug;42(2):202–210. doi: 10.1016/0002-9149(78)90901-3. [DOI] [PubMed] [Google Scholar]
  4. Black H. R., Quallich H., Gareleck C. B. Racial differences in serum creatine kinase levels. Am J Med. 1986 Sep;81(3):479–487. doi: 10.1016/0002-9343(86)90303-7. [DOI] [PubMed] [Google Scholar]
  5. Brownlow K., Elevitch F. R. Serum creatine phosphokinase isoenzyme (CPK2) in myositis. A report of six cases. JAMA. 1974 Nov 25;230(8):1141–1144. [PubMed] [Google Scholar]
  6. Calin A. Raised serum creatine phosphokinase activity in ankylosing spondylitis. Ann Rheum Dis. 1975 Jun;34(3):244–248. doi: 10.1136/ard.34.3.244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dempsey R., Morgan J., Cohen L. Reduction of enzyme efflux from skeletal muscle by diethylstilbestrol. Clin Pharmacol Ther. 1975 Jul;18(1):104–111. doi: 10.1002/cpt1975181104. [DOI] [PubMed] [Google Scholar]
  8. Durairaj S. K., Venkataraman K., de Guzman M., Haywood L. J. Prognostic features of ventricular tachycardia complicating acute myocardial infarction. J Electrocardiol. 1977;10(4):305–312. doi: 10.1016/s0022-0736(77)80002-2. [DOI] [PubMed] [Google Scholar]
  9. FLEISHER G. A., MCCONAHEY W. M., PANKOW M. SERUM CREATINE KINASE, LACTIC DEHYDROGENASE, AND GLUTAMIC-OXALACETIC TRANSAMINASE IN THYROID DISEASES AND PREGNANCY. Mayo Clin Proc. 1965 Apr;40:300–311. [PubMed] [Google Scholar]
  10. GRAIG F. A., ROSS G. Serum creatine-phosphokinase in thyroid disease. Metabolism. 1963 Jan;12:57–59. [PubMed] [Google Scholar]
  11. Gale A. N., Murphy E. A. The use of serum creatine phosphokinase in genetic counseling for Duchenne muscular dystrophy. I. Analysis of results from 29 studies. J Chronic Dis. 1978 Feb;31(2):101–109. doi: 10.1016/0021-9681(78)90095-4. [DOI] [PubMed] [Google Scholar]
  12. Gale A. N., Murphy E. A. The use of serum creatine phosphokinase in genetic counseling for Duchenne muscular dystrophy. II. Review of methods of assay and factors which may be relevant in the interpretation of serum creatine phosphokinase activity. J Chronic Dis. 1979;32(9-10):639–651. doi: 10.1016/0021-9681(79)90094-8. [DOI] [PubMed] [Google Scholar]
  13. Galen R. S. Myocardial infarction: a clinician's guide to isoenzymes. Med Times. 1977 Feb;105(2):89-96,99. [PubMed] [Google Scholar]
  14. Garcia W. Elevated creatine phosphokinase levels. Association with large muscle mass. Another pitfall in evaluating clinical significance of total serum CPK activity. JAMA. 1974 Jun 10;228(11):1395–1396. [PubMed] [Google Scholar]
  15. Goldberg D. M., Winfield D. A. Relationship of serum enzyme activities to demographic variables in a healthy population. Clin Chim Acta. 1974 Aug 20;54(3):357–368. doi: 10.1016/0009-8981(74)90253-8. [DOI] [PubMed] [Google Scholar]
  16. Lott J. A., Stang J. M. Serum enzymes and isoenzymes in the diagnosis and differential diagnosis of myocardial ischemia and necrosis. Clin Chem. 1980 Aug;26(9):1241–1250. [PubMed] [Google Scholar]
  17. Madias J. E., Chahine R. A., Gorlin R., Blacklow D. J. A comparison of transmural and nontransmural acute myocardial infarction. Circulation. 1974 Mar;49(3):498–507. doi: 10.1161/01.cir.49.3.498. [DOI] [PubMed] [Google Scholar]
  18. Meltzer H. Y. Factors affecting serum creatine phosphokinase levels in the general population: the role of race, activity and age. Clin Chim Acta. 1971 Jun;33(1):165–172. doi: 10.1016/0009-8981(71)90264-6. [DOI] [PubMed] [Google Scholar]
  19. Meltzer H. Muscle enzyme release in the acute psychoses. Arch Gen Psychiatry. 1969 Jul;21(1):102–112. doi: 10.1001/archpsyc.1969.01740190104015. [DOI] [PubMed] [Google Scholar]
  20. Munsat T. L., Baloh R., Pearson C. M., Fowler W., Jr Serum enzyme alterations in neuromuscular disorders. JAMA. 1973 Dec 24;226(13):1536–1543. [PubMed] [Google Scholar]
  21. Nevins M. A., Saran M., Bright M., Lyon L. J. Pitfalls in interpreting serum creatine phosphokinase activity. JAMA. 1973 Jun 4;224(10):1382–1387. [PubMed] [Google Scholar]
  22. Reindorp S., Whitehead R. G. Changes in serum creatine kinase ad other biological measurements assoicate with musculature in children rcovering from kwashiorkor. Br J Nutr. 1971 Mar;25(2):273–283. doi: 10.1079/bjn19710088. [DOI] [PubMed] [Google Scholar]
  23. Ressler N., Whitlock L. S. Applications of computer produced frequency distribution curves. II. Evaluation of the diagnostic significance of test results by multidimensional analysis. Clin Chem. 1967 Nov;13(11):931–940. [PubMed] [Google Scholar]
  24. Roberts R., Sobel B. E. CPK isoenzymes in evaluation of myocardial ischemic injury. Hosp Pract. 1976 Jan;11(1):55–62. doi: 10.1080/21548331.1976.11706481. [DOI] [PubMed] [Google Scholar]
  25. Sharpe D. N., Botvinick E. H., Shames D. M., Norman A., Chatterjee K., Parmley W. W. The clinical estimation of acute myocardial infarct size with 99mTechnetium pyrophosphate scintigraphy. Circulation. 1978 Feb;57(2):307–313. doi: 10.1161/01.cir.57.2.307. [DOI] [PubMed] [Google Scholar]
  26. Siegel A. J., Dawson D. M. Peripheral source of MB band of creatine kinase in alcoholic rhabdomyolysis. Nonspecificity of MB isoenzyme for myocardial injury in undiluted serum samples. JAMA. 1980 Aug 8;244(6):580–582. [PubMed] [Google Scholar]
  27. Siegel A. J., Silverman L. M., Holman B. L. Elevated creatine kinase MB isoenzyme levels in marathon runners. Normal myocardial scintigrams suggest noncardiac source. JAMA. 1981 Nov 6;246(18):2049–2051. [PubMed] [Google Scholar]
  28. Smith D. P. The relationship between serum creatine kinase and thyroid hormones: in vivo and in vitro studies. Clin Chim Acta. 1976 May 3;68(3):333–338. doi: 10.1016/0009-8981(76)90400-9. [DOI] [PubMed] [Google Scholar]
  29. Smith I., Elton R. A., Thomson W. H. Carrier detection in X-linked recessive (Duchenne) muscular dystrophy: serum creatine phosphokinase values in premenarchal, menstruating, postmenopausal and pregnant normal women. Clin Chim Acta. 1979 Nov 2;98(3):207–216. doi: 10.1016/0009-8981(79)90147-5. [DOI] [PubMed] [Google Scholar]
  30. Sobel B. E., Markham J., Karlsberg R. P., Roberts R. The nature of disappearance of creatine kinase from the circulation and its influence on enzymatic estimation of infarct size. Circ Res. 1977 Dec;41(6):836–844. doi: 10.1161/01.res.41.6.836. [DOI] [PubMed] [Google Scholar]
  31. Sobel B. E., Markham J., Roberts R. Factors influencing enzymatic estimates of infarct size. Am J Cardiol. 1977 Jan;39(1):130–132. doi: 10.1016/s0002-9149(77)80024-6. [DOI] [PubMed] [Google Scholar]
  32. Willems G. M., Muijtjens A. M., Lambi F. H., Hermens W. T. Estimation of circulatory parameters in patients with acute myocardial infarction. Significance for calculation of enzymatic infarct size. Cardiovasc Res. 1979 Oct;13(10):578–587. doi: 10.1093/cvr/13.10.578. [DOI] [PubMed] [Google Scholar]
  33. Wong E. T., Cobb C., Umehara M. K., Wolff G. A., Haywood L. J., Greenberg T., Shaw S. T., Jr Heterogeneity of serum creatine kinase activity among racial and gender groups of the population. Am J Clin Pathol. 1983 May;79(5):582–586. doi: 10.1093/ajcp/79.5.582. [DOI] [PubMed] [Google Scholar]
  34. Zellweger H., Durnin R., Simpson J. The diagnostic significance of serum enzymes and electrocardiogram in various muscular dystrophies. Acta Neurol Scand. 1972;48(1):87–101. doi: 10.1111/j.1600-0404.1972.tb07529.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of the National Medical Association are provided here courtesy of National Medical Association

RESOURCES