Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1984 Jan;43(1):38–42. doi: 10.1128/iai.43.1.38-42.1984

Characteristics of Rickettsia mooseri infection of normal and immune mice.

A E Crist Jr, C L Wisseman Jr, J R Murphy
PMCID: PMC263384  PMID: 6546307

Abstract

Rickettsia mooseri infection initiated by subcutaneous injection has been studied in BALB/c mice with the objective of developing a model for the study of immune mechanisms. Characterization of infection included the following: measurement of the replication, dissemination, and clearance of rickettsiae; measurement of correlates of the immune response, including humoral antibody, hypersensitivity to subcutaneously inoculated rickettsial antigen, and activation of nonspecific macrophage microbicidal capacity; and measurement of resistance to a second homologous challenge. Local infection at the site of subcutaneous injection progressed through day 5 and was controlled by day 7. Systemic infection as determined by the presence of rickettsiae in spleen was first detected on day 7 and progressed through day 14; however, rickettsiae persisted in this organ at reduced numbers through at least day 28. Control of the local infection at the site of subcutaneous injection occurred at about the time humoral antibodies and hypersensitivity reactions to subcutaneously injected rickettsial antigens became demonstrable and was paralleled by a capacity to resist homologous subcutaneous challenge at a site distant from that of the primary infection. Systemic infection progressed in spite of this acquired immune capacity and was controlled in the spleen in parallel with the development of enhanced macrophage microbicidal capacity in the liver. The results show that an acquired immunity is capable of restricting rickettsial growth at subcutaneous sites at a time when rickettsiae are increasing in titer in deep organs.

Full text

PDF
42

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BOVARNICK M. R., MILLER J. C., SNYDER J. C. The influence of certain salts, amino acids, sugars, and proteins on the stability of rickettsiae. J Bacteriol. 1950 Apr;59(4):509–522. doi: 10.1128/jb.59.4.509-522.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Collins F. M. Vaccines and cell-mediated immunity. Bacteriol Rev. 1974 Dec;38(4):371–402. doi: 10.1128/br.38.4.371-402.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hanson B. A., Wisseman C. L., Jr, Waddell A., Silverman D. J. Some characteristics of heavy and light bands of Rickettsia prowazekii on Renografin gradients. Infect Immun. 1981 Nov;34(2):596–604. doi: 10.1128/iai.34.2.596-604.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Murphy J. R., Wisseman C. G., Jr, Fiset P. Mechanisms of immunity in typhus infection: adoptive transfer of immunity to Rickettsia mooseri. Infect Immun. 1979 May;24(2):387–393. doi: 10.1128/iai.24.2.387-393.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Murphy J. R., Wisseman C. L., Jr, Fiset P. Mechanisms of immunity in typhus infection: analysis of immunity to Rickettsia mooseri infection of guinea pigs. Infect Immun. 1980 Mar;27(3):730–738. doi: 10.1128/iai.27.3.730-738.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Murphy J. R., Wisseman C. L., Jr, Fiset P. Mechanisms of immunity in typhus infection: some characteristics of Rickettsia mooseri infection of guinea pigs. Infect Immun. 1978 Aug;21(2):417–424. doi: 10.1128/iai.21.2.417-424.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Murphy J. R., Wisseman C. L., Jr, Fiset P. Mechanisms of immunity in typhus infection: some characteristics of intradermal Rickettsia mooseri infection in normal and immune guinea pigs. Infect Immun. 1978 Dec;22(3):810–820. doi: 10.1128/iai.22.3.810-820.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Murphy J. R., Wisseman C. L., Jr, Snyder L. B. Plaque assay for Rickettsia mooseri in tissue samples. Proc Soc Exp Biol Med. 1976 Oct;153(1):151–155. doi: 10.3181/00379727-153-39499. [DOI] [PubMed] [Google Scholar]
  9. North R. J. Cellular mediators of anti-Listeria immunity as an enlarged population of short lived, replicating T cells. Kinetics of their production. J Exp Med. 1973 Aug 1;138(2):342–355. doi: 10.1084/jem.138.2.342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. North R. J., Kirstein D. P. T-cell-mediated concomitant immunity to syngeneic tumors. I. Activated macrophages as the expressors of nonspecific immunity to unrelated tumors and bacterial parasites. J Exp Med. 1977 Feb 1;145(2):275–292. doi: 10.1084/jem.145.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. North R. J. Nature of "memory" in T-cell-mediated antibacterial immunity: anamnestic production of mediator T cells. Infect Immun. 1975 Oct;12(4):754–760. doi: 10.1128/iai.12.4.754-760.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ormsbee R., Peacock M., Gerloff R., Tallent G., Wike D. Limits of rickettsial infectivity. Infect Immun. 1978 Jan;19(1):239–245. doi: 10.1128/iai.19.1.239-245.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Patel P. J. Expression of antibacterial resistance at the site of a delayed hypersensitivity reaction. Infect Immun. 1980 Jul;29(1):59–65. doi: 10.1128/iai.29.1.59-65.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Silverman D. J., Fiset P., Wisseman C. L., Jr Simple, differential staining technique for enumerating rickettsiae in yolk sac, tissue culture extracts, or purified suspensions. J Clin Microbiol. 1979 Mar;9(3):437–440. doi: 10.1128/jcm.9.3.437-440.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. WISSEMAN C. L., Jr, WOOD W. H., Jr, NORIEGA A. R., JORDAN M. E., RILL D. J. Antibodies and clinical relapse of murine typhus fever following early chemotherapy. Ann Intern Med. 1962 Nov;57:743–754. doi: 10.7326/0003-4819-57-5-743. [DOI] [PubMed] [Google Scholar]
  16. Wike D. A., Ormsbee R. A., Tallent G., Peacock M. G. Effects of various suspending media on plaque formation by rickettsiae in tissue culture. Infect Immun. 1972 Oct;6(4):550–556. doi: 10.1128/iai.6.4.550-556.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wike D. A., Tallent G., Peacock M. G., Ormsbee R. A. Studies of the rickettsial plaque assay technique. Infect Immun. 1972 May;5(5):715–722. doi: 10.1128/iai.5.5.715-722.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wisseman C. L., Jr, el Batawi Y., Wood W. H., Jr, Noriega A. R. Gross and microscopic skin reactions to killed typhus Rickettsiae in human beings. J Immunol. 1967 Jan;98(1):194–209. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES