Abstract
We examined the structural requirements within the species-specific 3,6-di-O-methyl-beta-D-glucopyranosyl-(1 leads to 4)-2,3-di-O-methyl- alpha-L-rhamnopyranosyl-(1 leads to 2)-3-O-methyl-alpha-L-rhamnopyranose unit of the phenolic glycolipid I antigen of Mycobacterium leprae for binding to anti-glycolipid immunoglobulin M from human leprosy sera. We used chemically defined, partially deglycosylated fragments of phenolic glycolipid I, two other minor M. leprae-specific phenolic glycolipids (those containing 6-O-methyl-beta-D-glucopyranosyl-(1 leads to 4)-2,3-di-O-methyl-alpha- L-rhamnopyranosyl-(1 leads to 2)-3-O-methyl-alpha-L-rhamnopyranose and 3,6-di-O-methyl-beta-D-glucopyranosyl-(1 leads to 4)-3-O-methyl-alpha- L-rhamnopyranosyl-(1 leads to 2)-3-O-methyl-alpha-rhamnopyranose units), and phenolic glycolipids from other mycobacteria. Additionally, the trisaccharide of phenolic glycolipid I, the 3,6-di-O-methyl-beta-D-glucopyranosyl-(1 leads to 4)-2, 3-di-O-methyl-alpha-L-rhamnopyranose, the 6-O-methyl-beta-D-glucopyranosyl-(1 leads to 4)-2,3-di-O-methyl-alpha- L-rhamnopyranose, and the beta-D-glucopyranosyl-(1 leads to 4)-2,3-di-O-methyl-alpha- L-rhamnopyranose disaccharides were synthesized and characterized, and their activities were examined. Only the phenolic glycolipids containing 3,6-di-O-methyl-beta-D-glucopyranosyl at the nonreducing terminus were efficient in binding the anti-glycolipid immunoglobulin M, and the 3,6-di-O-methyl-beta-D-glucopyranosyl-containing di- and trisaccharides were the most effective in inhibiting this binding. Thus, the 3,6-di-O-methyl-beta-D-glucopyranosyl substituent was recognized as the primary antigen determinant in phenolic glycolipid I. With this information, bovine serum albumin containing reductively aminated 3,6-di-O-methyl-beta-D-glucopyranosyl-(1 leads to 4)-2,3-di-O-methyl- L-rhamnose was prepared and shown to be highly active in the serodiagnosis of leprosy.
Full text
PDF![245](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bcf/263417/dfd306bdae43/iai00130-0267.png)
![246](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bcf/263417/2507ca8141b7/iai00130-0268.png)
![247](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bcf/263417/1ba7f3176bc4/iai00130-0269.png)
![248](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bcf/263417/900887bea27a/iai00130-0270.png)
![249](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bcf/263417/30834e9b4a65/iai00130-0271.png)
![250](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bcf/263417/91defd3156a0/iai00130-0272.png)
![251](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bcf/263417/fe9e8c4e11ed/iai00130-0273.png)
![252](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bcf/263417/05b6cf35401a/iai00130-0274.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Al-Samarrai T. H., Smith P. F., Lynn R. J. Identification of the major antigenic determinants on lipoglycans from Acholeplasma granularum and Acholeplasma axanthum. Infect Immun. 1983 May;40(2):629–632. doi: 10.1128/iai.40.2.629-632.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brennan P. J., Aspinall G. O., Shin J. E. Structure of the specific oligosaccharides from the glycopeptidolipid antigens of serovars in the Mycobacterium avium-Mycobacterium intracellulare-Mycobacterium scrofulaceum complex. J Biol Chem. 1981 Jul 10;256(13):6817–6822. [PubMed] [Google Scholar]
- Brennan P. J., Mayer H., Aspinall G. O., Nam Shin J. E. Structures of the glycopeptidolipid antigens from serovars in the Mycobacterium avium/Mycobacterium intracellulare/Mycobacterium scrofulaceum serocomplex. Eur J Biochem. 1981 Mar 16;115(1):7–15. doi: 10.1111/j.1432-1033.1981.tb06190.x. [DOI] [PubMed] [Google Scholar]
- Brett S. J., Draper P., Payne S. N., Rees R. J. Serological activity of a characteristic phenolic glycolipid from Mycobacterium leprae in sera from patients with leprosy and tuberculosis. Clin Exp Immunol. 1983 May;52(2):271–279. [PMC free article] [PubMed] [Google Scholar]
- Chan W. W., Schutt H., Brand K. Active subunits of transaldolase bound to sepharose. Eur J Biochem. 1973 Dec 17;40(2):533–541. doi: 10.1111/j.1432-1033.1973.tb03224.x. [DOI] [PubMed] [Google Scholar]
- Cho S. N., Yanagihara D. L., Hunter S. W., Gelber R. H., Brennan P. J. Serological specificity of phenolic glycolipid I from Mycobacterium leprae and use in serodiagnosis of leprosy. Infect Immun. 1983 Sep;41(3):1077–1083. doi: 10.1128/iai.41.3.1077-1083.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DEMARTEAU-GINSBURG H., LEDERER E. SUR LA STRUCTURE CHIMIQUE DU MYCOSIDE B. Biochim Biophys Acta. 1963 Aug 27;70:442–451. doi: 10.1016/0006-3002(63)90774-1. [DOI] [PubMed] [Google Scholar]
- Gray G. R. Antibodies to carbohydrates: preparation of antigens by coupling carbohydrates to proteins by reductive amination with cyanoborohydride. Methods Enzymol. 1978;50:155–160. doi: 10.1016/0076-6879(78)50014-1. [DOI] [PubMed] [Google Scholar]
- HAKOMORI S. A RAPID PERMETHYLATION OF GLYCOLIPID, AND POLYSACCHARIDE CATALYZED BY METHYLSULFINYL CARBANION IN DIMETHYL SULFOXIDE. J Biochem. 1964 Feb;55:205–208. [PubMed] [Google Scholar]
- Heidelberger M., Dudman W. F., Nimmich W. Immunochemical relationships of certain capsular polysaccharides of Klebsiella, pneumococci and Rhizobia. J Immunol. 1970 Jun;104(6):1321–1328. [PubMed] [Google Scholar]
- Hunter S. W., Brennan P. J. A novel phenolic glycolipid from Mycobacterium leprae possibly involved in immunogenicity and pathogenicity. J Bacteriol. 1981 Sep;147(3):728–735. doi: 10.1128/jb.147.3.728-735.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hunter S. W., Brennan P. J. Further specific extracellular phenolic glycolipid antigens and a related diacylphthiocerol from Mycobacterium leprae. J Biol Chem. 1983 Jun 25;258(12):7556–7562. [PubMed] [Google Scholar]
- Hunter S. W., Fujiwara T., Brennan P. J. Structure and antigenicity of the major specific glycolipid antigen of Mycobacterium leprae. J Biol Chem. 1982 Dec 25;257(24):15072–15078. [PubMed] [Google Scholar]
- MCCARTY M. Variation in the group-specific carbohydrate of group A streptococci. II. Studies on the chemical basis for serological specificity of the carbohydrates. J Exp Med. 1956 Nov 1;104(5):629–643. doi: 10.1084/jem.104.5.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maugh T. H., 2nd Leprosy vaccine trials to begin soon. Science. 1982 Feb 26;215(4536):1083–1086. doi: 10.1126/science.7063841. [DOI] [PubMed] [Google Scholar]
- Nudelman E., Kannagi R., Hakomori S., Parsons M., Lipinski M., Wiels J., Fellous M., Tursz T. A glycolipid antigen associated with Burkitt lymphoma defined by a monoclonal antibody. Science. 1983 Apr 29;220(4596):509–511. doi: 10.1126/science.6836295. [DOI] [PubMed] [Google Scholar]
- Paulsen H., Bünsch A. Synthesis of the pentasaccharide chain of the Forssman antigen. Angew Chem Int Ed Engl. 1980;19(11):902–903. doi: 10.1002/anie.198009021. [DOI] [PubMed] [Google Scholar]
- Sugiyama T., Smith P. F., Langworthy T. A., Mayberry W. R. Immunological analysis of glycolipids and lipopolysaccharides derived from various mycoplasmas. Infect Immun. 1974 Dec;10(6):1273–1279. doi: 10.1128/iai.10.6.1273-1279.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Young W. W., Jr, Hakomori S. I. Therapy of mouse lymphoma with monoclonal antibodies to glycolipid: selection of low antigenic variants in vivo. Science. 1981 Jan 30;211(4481):487–489. doi: 10.1126/science.7455688. [DOI] [PubMed] [Google Scholar]