Skip to main content
Bioinformatics logoLink to Bioinformatics
. 2008 Jun 23;24(15):1707–1714. doi: 10.1093/bioinformatics/btn284

FIRMA: a method for detection of alternative splicing from exon array data

E Purdom 1,*, K M Simpson 2, M D Robinson 2,3, J G Conboy 4, A V Lapuk 4, TP Speed 1,2
PMCID: PMC2638867  PMID: 18573797

Abstract

Motivation: Analyses of EST data show that alternative splicing is much more widespread than once thought. The advent of exon and tiling microarrays means that researchers now have the capacity to experimentally measure alternative splicing on a genome wide level. New methods are needed to analyze the data from these arrays.

Results: We present a method, finding isoforms using robust multichip analysis (FIRMA), for detecting differential alternative splicing in exon array data. FIRMA has been developed for Affymetrix exon arrays, but could in principle be extended to other exon arrays, tiling arrays or splice junction arrays. We have evaluated the method using simulated data, and have also applied it to two datasets: a panel of 11 human tissues and a set of 10 pairs of matched normal and tumor colon tissue. FIRMA is able to detect exons in several genes confirmed by reverse transcriptase PCR.

Availability: R code implementing our methods is contributed to the package aroma.affymetrix.

Contact: epurdom@stat.berkeley.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

Supplementary Material

[Supplementary Data]
btn284_index.html (924B, html)

REFERENCES

  1. Black D. Mechanisms of alternative pre–messenger RNA splicing. Ann. Rev. Biochem. 2003;72:291–336. doi: 10.1146/annurev.biochem.72.121801.161720. [DOI] [PubMed] [Google Scholar]
  2. Brinkman B. Splice variants as cancer biomarkers. Clin. Biochem. 2004;37:584–594. doi: 10.1016/j.clinbiochem.2004.05.015. [DOI] [PubMed] [Google Scholar]
  3. Clark F, Thanaraj T. Categorization and characterization of transcript–confirmed constitutively and alternatively spliced introns and exons from human. Hum. Mol. Genet. 2002;11:451–464. doi: 10.1093/hmg/11.4.451. [DOI] [PubMed] [Google Scholar]
  4. Cline MS, et al. ANOSVA: a statistical method for detecting splice variation from expression data. Bioinformatics. 2004;21(suppl. 1):i107–i115. doi: 10.1093/bioinformatics/bti1010. [DOI] [PubMed] [Google Scholar]
  5. Das D, et al. A correlation with exon expression approach to identify cis-regulatory elements for tissue-specific alternative splicing. Nucleic Acids Res. 2007;35:4845–4857. doi: 10.1093/nar/gkm485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Durinck S, et al. Biomart and bioconductor: a powerful link between biological databases and microarray data analysis. Bioinformatics. 2005;21:3439–3440. doi: 10.1093/bioinformatics/bti525. [DOI] [PubMed] [Google Scholar]
  7. Efron B. Large-scale simultaneous hypothesis testing: the choice of a null hypothesis. JASA. 2004;99:96–104. [Google Scholar]
  8. Gardina PJ, et al. Alternative splicing and differential gene expression in colon cancer detected by a whole genome exon array. BMC Genomics. 2006;7:325. doi: 10.1186/1471-2164-7-325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hubbard TJP, et al. Ensembl 2007. Nucleic Acids Res. 2007;35:D610–D617. doi: 10.1093/nar/gkl996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Irizarry RA, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003;4:249–264. doi: 10.1093/biostatistics/4.2.249. [DOI] [PubMed] [Google Scholar]
  11. Kwan T, et al. Heritability of alternative splicing in the human genome. Genome Res. 2007;17:1210–1218. doi: 10.1101/gr.6281007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Le K, et al. Detecting tissue–specific regulation of alternative splicing as a qualitative change in microarray data. Nucleic Acids Res. 2004;32:e180. doi: 10.1093/nar/gnh173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Maniatis T, Tasic B. Alternative pre–mRNA splicing and proteome expansion in metazoans. Nature. 2002;418:236–243. doi: 10.1038/418236a. [DOI] [PubMed] [Google Scholar]
  14. Marazzi A. Algorithms, Routines and S Functions for Robust Statistics. Pacific Grove, California: Wadsworth & Brooks/Cole; 1993. [Google Scholar]
  15. Matlin A, et al. Understanding alternative splicing: towards a cellular code. Nat. Rev. Mol. Cell Biol. 2005;6:386–398. doi: 10.1038/nrm1645. [DOI] [PubMed] [Google Scholar]
  16. Modrek B, Lee C. A genomic view of alternative splicing. Nat. Genet. 2002;30:13–19. doi: 10.1038/ng0102-13. [DOI] [PubMed] [Google Scholar]
  17. R Development Core Team. R: a Language and Environment for Statistical Computing. Vienna, Austria: 2006. [Google Scholar]
  18. Shai O, et al. Inferring global levels of alternative splicing isoforms using a generative model of microarray data. Bioinformatics. 2006;22:606–613. doi: 10.1093/bioinformatics/btk028. [DOI] [PubMed] [Google Scholar]
  19. Sorek R, et al. How prevalent is functional alternative splicing in the human genome? Trends Genet. 2004;20:68–71. doi: 10.1016/j.tig.2003.12.004. [DOI] [PubMed] [Google Scholar]
  20. Stamm S, et al. Function of alternative splicing. Gene. 2005;344:1–20. doi: 10.1016/j.gene.2004.10.022. [DOI] [PubMed] [Google Scholar]
  21. Sugnet CW, et al. Transcriptome and genome conservation of alternative splicing events in humans and mice. Pac. Symp. Biocomput. 2004;9:66–77. doi: 10.1142/9789812704856_0007. [DOI] [PubMed] [Google Scholar]
  22. Venables J. Aberrant and alternative splicing in cancer. Cancer Res. 2004;64:7647–7654. doi: 10.1158/0008-5472.CAN-04-1910. [DOI] [PubMed] [Google Scholar]
  23. Wang H, et al. Gene structure–based splice variant deconvolution using a microarray platform. Bioinformatics. 2003;19(suppl. 1):i315–i322. doi: 10.1093/bioinformatics/btg1044. [DOI] [PubMed] [Google Scholar]
  24. Yeo GW, et al. Identification and analysis of alternative splicing events conserved in human and mouse. Proc. Natl Acad. Sci. USA. 2005;102:2850–2855. doi: 10.1073/pnas.0409742102. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

[Supplementary Data]
btn284_index.html (924B, html)
btn284_1.pdf (1.1MB, pdf)
btn284_2.pdf (5.3MB, pdf)
btn284_3.pdf (2.6MB, pdf)

Articles from Bioinformatics are provided here courtesy of Oxford University Press

RESOURCES