Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1984 Mar;43(3):850–855. doi: 10.1128/iai.43.3.850-855.1984

Characterization of antigens specific to the surface of germ tubes of Candida albicans by immunofluorescence.

P M Sundstrom, G E Kenny
PMCID: PMC264260  PMID: 6199304

Abstract

To characterize germ tube-specific antigens of Candida albicans, rabbit antiserum prepared to Formalin-treated yeast possessing germ tubes was adsorbed with stationary-phase blastospores. By immunofluorescence and enzyme-linked immunosorbent assay, this antibody did not react with blastospores but detected germ tube-specific antigens in hyphal forms. Germ tube-specific antigens appeared 30 min after placing blastospores in appropriate conditions for germ tube formation. Hyphae, formed by allowing yeast to germinate for 24 h, still retained germ tube-specific antigens, but blastospores budding off these hyphae were unstained, as were log-phase blastospores. Germ tube-specific antigens were sensitive to heat, sodium metaperiodate oxidation, dithiothreitol reduction, and proteolysis with pronase, trypsin, or chymotrypsin, whereas antigens common to blastospores and germ tubes were stable to boiling, treatment with proteolytic enzymes, and dithiothreitol reduction. Thus, surfaces of germ tubes can be distinguished from those of blastospores not only immunologically, but also by the sensitivity of germ tube-specific antigens to proteolytic treatments.

Full text

PDF
853

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahrens J. C., Daneo-Moore L., Buckley H. R. Differential protein synthesis in Candida albicans during blastospore formation at 24.5 degrees C and during germ tube formation at 37 degrees C. J Gen Microbiol. 1983 Apr;129(4):1133–1139. doi: 10.1099/00221287-129-4-1133. [DOI] [PubMed] [Google Scholar]
  2. Bartnicki-Garcia S., Lippman E. Fungal morphogenesis: cell wall construction in Mucor rouxii. Science. 1969 Jul 18;165(3890):302–304. doi: 10.1126/science.165.3890.302. [DOI] [PubMed] [Google Scholar]
  3. Brown L. A., Chaffin W. L. Differential expression of cytoplasmic proteins during yeast bud and germ tube formation in Candida albicans. Can J Microbiol. 1981 Jun;27(6):580–585. doi: 10.1139/m81-088. [DOI] [PubMed] [Google Scholar]
  4. Brummel M., Soll D. R. The temporal regulation of protein synthesis during synchronous bud or mycelium formation in the dimorphic yeast Candida albicans. Dev Biol. 1982 Jan;89(1):211–224. doi: 10.1016/0012-1606(82)90308-6. [DOI] [PubMed] [Google Scholar]
  5. CLELAND W. W. DITHIOTHREITOL, A NEW PROTECTIVE REAGENT FOR SH GROUPS. Biochemistry. 1964 Apr;3:480–482. doi: 10.1021/bi00892a002. [DOI] [PubMed] [Google Scholar]
  6. Chaffin W. L., Wheeler D. E. Morphological commitment in Candida albicans. Can J Microbiol. 1981 Jan;27(1):131–137. doi: 10.1139/m81-020. [DOI] [PubMed] [Google Scholar]
  7. Dabrowa N., Howard D. H., Landau J. W., Shechter Y. Synthesis of nueic acids and proteins in the dimorphic forms of Candida albicans. Sabouraudia. 1970 Nov;8(3):163–169. doi: 10.1080/00362177085190831. [DOI] [PubMed] [Google Scholar]
  8. Diamond R. D., Krzesicki R., Jao W. Damage to pseudohyphal forms of Candida albicans by neutrophils in the absence of serum in vitro. J Clin Invest. 1978 Feb;61(2):349–359. doi: 10.1172/JCI108945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dottavio-Martin D., Ravel J. M. Radiolabeling of proteins by reductive alkylation with [14C]formaldehyde and sodium cyanoborohydride. Anal Biochem. 1978 Jul 1;87(2):562–565. doi: 10.1016/0003-2697(78)90706-6. [DOI] [PubMed] [Google Scholar]
  10. Evans E. G., Richardson M. D., Odds F. C., Holland K. T. Relevance of antigenicity of Candida albicans growth phases to diagnosis of systemic candidiasis. Br Med J. 1973 Oct 13;4(5884):86–87. doi: 10.1136/bmj.4.5884.86. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gubish E. R., Jr, Chen K. C., Buchanan T. M. Attachment of gonococcal pili to lectin-resistant clones of Chinese hamster ovary cells. Infect Immun. 1982 Jul;37(1):189–194. doi: 10.1128/iai.37.1.189-194.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Haneke E. Different immunofluorescent titres of Candida albicans blastospores and pseudohyphae. Mycopathol Mycol Appl. 1974 Apr 30;52(3):269–271. doi: 10.1007/BF02198754. [DOI] [PubMed] [Google Scholar]
  13. Ho Y. M., Ng M. H., Huang C. T. Antibodies to germinating and yeast cells of Candida albicans in human and rabbit sera. J Clin Pathol. 1979 Apr;32(4):399–405. doi: 10.1136/jcp.32.4.399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ho Y. M., Ng M. H., Teoh-Chan C. H., Yue P. C., Huang C. T. Indirect immunofluorescence assay for antibody to germ tube of Candida albicans--a new diagnostic test. J Clin Pathol. 1976 Nov;29(11):1007–1010. doi: 10.1136/jcp.29.11.1007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Johnson G. D., Nogueira Araujo G. M. A simple method of reducing the fading of immunofluorescence during microscopy. J Immunol Methods. 1981;43(3):349–350. doi: 10.1016/0022-1759(81)90183-6. [DOI] [PubMed] [Google Scholar]
  16. Kenny G. E. Immunogenicity of Mycoplasma pneumoniae. Infect Immun. 1971 Apr;3(4):510–515. doi: 10.1128/iai.3.4.510-515.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kimura L. H., Pearsall N. N. Adherence of Candida albicans to human buccal epithelial cells. Infect Immun. 1978 Jul;21(1):64–68. doi: 10.1128/iai.21.1.64-68.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kimura L. H., Pearsall N. N. Relationship between germination of Candida albicans and increased adherence to human buccal epithelial cells. Infect Immun. 1980 May;28(2):464–468. doi: 10.1128/iai.28.2.464-468.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lehner T. Immunofluorescence study of Candida albicans in candidiasis, carriers and controls. J Pathol Bacteriol. 1966 Jan;91(1):97–104. doi: 10.1002/path.1700910114. [DOI] [PubMed] [Google Scholar]
  20. Manning M., Mitchell T. G. Analysis of cytoplasmic antigens of the yeast and mycelial phases of Candida albicans by two-dimensional electrophoresis. Infect Immun. 1980 Nov;30(2):484–495. doi: 10.1128/iai.30.2.484-495.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Manning M., Mitchell T. G. Strain variation and morphogenesis of yeast- and mycelial-phase Candida albicans in low-sulfate, synthetic medium. J Bacteriol. 1980 May;142(2):714–719. doi: 10.1128/jb.142.2.714-719.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Marchant R., Smith D. G. A serological investigation of hyphal growth in Fusarium culmorum. Arch Mikrobiol. 1968;63(1):85–94. doi: 10.1007/BF00407067. [DOI] [PubMed] [Google Scholar]
  23. Mardon D. N., Gunn J. L., Robinette E., Jr Variation in the lethal response in mice to yeast-like and pseudohyphal forms of Candida albicans. Can J Microbiol. 1975 Nov;21(11):1681–1687. doi: 10.1139/m75-246. [DOI] [PubMed] [Google Scholar]
  24. Marrie T. J., Costerton J. W. The ultrastructure of Candida albicans infections. Can J Microbiol. 1981 Nov;27(11):1156–1164. doi: 10.1139/m81-181. [DOI] [PubMed] [Google Scholar]
  25. Mitchell L. H., Soll D. R. Commitment to germ tube or bud formation during release from stationary phase in Candida albicans. Exp Cell Res. 1979 Apr;120(1):167–179. doi: 10.1016/0014-4827(79)90547-0. [DOI] [PubMed] [Google Scholar]
  26. Okubo Y., Honma Y., Suzuki S. Relationship between phosphate content and serological activities of the mannans of Candida albicans strains NIH A-207, NIH B-792, and J-1012. J Bacteriol. 1979 Jan;137(1):677–680. doi: 10.1128/jb.137.1.677-680.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. SUMMERS D. F., GROLLMAN A. P., HASENCLEVER H. F. POLYSACCHARIDE ANTIGENS OF CANDIDA CELL WALL. J Immunol. 1964 Mar;92:491–499. [PubMed] [Google Scholar]
  28. Scherwitz C. Ultrastructure of human cutaneous candidosis. J Invest Dermatol. 1982 Mar;78(3):200–205. doi: 10.1111/1523-1747.ep12506451. [DOI] [PubMed] [Google Scholar]
  29. Shepherd M. G., Yin C. Y., Ram S. P., Sullivan P. A. Germ tube induction in Candida albicans. Can J Microbiol. 1980 Jan;26(1):21–26. doi: 10.1139/m80-004. [DOI] [PubMed] [Google Scholar]
  30. Syverson R. E., Buckley H. R., Campbell C. C. Cytoplasmic antigens unique to the mycelial or yeast phase of Candida albicans. Infect Immun. 1975 Nov;12(5):1184–1188. doi: 10.1128/iai.12.5.1184-1188.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tronchin G., Poulain D., Herbaut J., Biguet J. Cytochemical and ultrastructural studies of Candida albicans. II. Evidence for a cell wall coat using concanavalin A. J Ultrastruct Res. 1981 Apr;75(1):50–59. doi: 10.1016/s0022-5320(81)80099-8. [DOI] [PubMed] [Google Scholar]
  32. Yamasaki R. B., Osuga D. T., Feeney R. E. Periodate oxidation of methionine in proteins. Anal Biochem. 1982 Oct;126(1):183–189. doi: 10.1016/0003-2697(82)90127-0. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES