Skip to main content
The Plant Cell logoLink to The Plant Cell
. 2004 Mar 9;16(Suppl):S203–S213. doi: 10.1105/tpc.017988

Imprinting and seed development.

Mary Gehring 1, Yeonhee Choi 1, Robert L Fischer 1
PMCID: PMC2643396  PMID: 15010515

Full Text

The Full Text of this article is available as a PDF (122.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams S., Vinkenoog R., Spielman M., Dickinson H. G., Scott R. J. Parent-of-origin effects on seed development in Arabidopsis thaliana require DNA methylation. Development. 2000 Jun;127(11):2493–2502. doi: 10.1242/dev.127.11.2493. [DOI] [PubMed] [Google Scholar]
  2. Bartee L., Malagnac F., Bender J. Arabidopsis cmt3 chromomethylase mutations block non-CG methylation and silencing of an endogenous gene. Genes Dev. 2001 Jul 15;15(14):1753–1758. doi: 10.1101/gad.905701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bell A. C., Felsenfeld G. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature. 2000 May 25;405(6785):482–485. doi: 10.1038/35013100. [DOI] [PubMed] [Google Scholar]
  4. Birve A., Sengupta A. K., Beuchle D., Larsson J., Kennison J. A., Rasmuson-Lestander A, Müller J. Su(z)12, a novel Drosophila Polycomb group gene that is conserved in vertebrates and plants. Development. 2001 Sep;128(17):3371–3379. doi: 10.1242/dev.128.17.3371. [DOI] [PubMed] [Google Scholar]
  5. Boisnard-Lorig C., Colon-Carmona A., Bauch M., Hodge S., Doerner P., Bancharel E., Dumas C., Haseloff J., Berger F. Dynamic analyses of the expression of the HISTONE::YFP fusion protein in arabidopsis show that syncytial endosperm is divided in mitotic domains. Plant Cell. 2001 Mar;13(3):495–509. doi: 10.1105/tpc.13.3.495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brink R. A., Kermicle J. L., Ziebur N. K. Derepression in the female gametophyte in relation to paramutant R expression in maize endosperms, embryos, and seedlings. Genetics. 1970 Sep;66(1):87–96. doi: 10.1093/genetics/66.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brzeski Jan, Jerzmanowski Andrzej. Deficient in DNA methylation 1 (DDM1) defines a novel family of chromatin-remodeling factors. J Biol Chem. 2002 Oct 25;278(2):823–828. doi: 10.1074/jbc.M209260200. [DOI] [PubMed] [Google Scholar]
  8. Bushell Catherine, Spielman Melissa, Scott Rod J. The basis of natural and artificial postzygotic hybridization barriers in Arabidopsis species. Plant Cell. 2003 Jun;15(6):1430–1442. doi: 10.1105/tpc.010496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cao X., Springer N. M., Muszynski M. G., Phillips R. L., Kaeppler S., Jacobsen S. E. Conserved plant genes with similarity to mammalian de novo DNA methyltransferases. Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4979–4984. doi: 10.1073/pnas.97.9.4979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cao Xiaofeng, Jacobsen Steven E. Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes. Proc Natl Acad Sci U S A. 2002 Jul 31;99 (Suppl 4):16491–16498. doi: 10.1073/pnas.162371599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cao Xiaofeng, Jacobsen Steven E. Role of the arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing. Curr Biol. 2002 Jul 9;12(13):1138–1144. doi: 10.1016/s0960-9822(02)00925-9. [DOI] [PubMed] [Google Scholar]
  12. Chaudhuri S., Messing J. Allele-specific parental imprinting of dzr1, a posttranscriptional regulator of zein accumulation. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4867–4871. doi: 10.1073/pnas.91.11.4867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Chaudhury A. M., Ming L., Miller C., Craig S., Dennis E. S., Peacock W. J. Fertilization-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):4223–4228. doi: 10.1073/pnas.94.8.4223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Choi Yeonhee, Gehring Mary, Johnson Lianna, Hannon Mike, Harada John J., Goldberg Robert B., Jacobsen Steven E., Fischer Robert L. DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in arabidopsis. Cell. 2002 Jul 12;110(1):33–42. doi: 10.1016/s0092-8674(02)00807-3. [DOI] [PubMed] [Google Scholar]
  15. Comai L., Tyagi A. P., Winter K., Holmes-Davis R., Reynolds S. H., Stevens Y., Byers B. Phenotypic instability and rapid gene silencing in newly formed arabidopsis allotetraploids. Plant Cell. 2000 Sep;12(9):1551–1568. doi: 10.1105/tpc.12.9.1551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Czermin Birgit, Melfi Raffaella, McCabe Donna, Seitz Volker, Imhof Axel, Pirrotta Vincenzo. Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell. 2002 Oct 18;111(2):185–196. doi: 10.1016/s0092-8674(02)00975-3. [DOI] [PubMed] [Google Scholar]
  17. Danilevskaya Olga N., Hermon Pedro, Hantke Sabine, Muszynski Michael G., Kollipara Krishna, Ananiev Evgueni V. Duplicated fie genes in maize: expression pattern and imprinting suggest distinct functions. Plant Cell. 2003 Feb;15(2):425–438. doi: 10.1105/tpc.006759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Dickinson Hugh, Scott Rod. DEMETER, Goddess of the harvest, activates maternal MEDEA to produce the perfect seed. Mol Cell. 2002 Jul;10(1):5–7. doi: 10.1016/s1097-2765(02)00582-8. [DOI] [PubMed] [Google Scholar]
  19. Eden S., Constancia M., Hashimshony T., Dean W., Goldstein B., Johnson A. C., Keshet I., Reik W., Cedar H. An upstream repressor element plays a role in Igf2 imprinting. EMBO J. 2001 Jul 2;20(13):3518–3525. doi: 10.1093/emboj/20.13.3518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Faure Jean-Emmanuel, Rotman Nicolas, Fortuné Philippe, Dumas Christian. Fertilization in Arabidopsis thaliana wild type: developmental stages and time course. Plant J. 2002 May;30(4):481–488. doi: 10.1046/j.1365-313x.2002.01305.x. [DOI] [PubMed] [Google Scholar]
  21. Ferguson-Smith A. C., Surani M. A. Imprinting and the epigenetic asymmetry between parental genomes. Science. 2001 Aug 10;293(5532):1086–1089. doi: 10.1126/science.1064020. [DOI] [PubMed] [Google Scholar]
  22. Finnegan E. J., Kovac K. A. Plant DNA methyltransferases. Plant Mol Biol. 2000 Jun;43(2-3):189–201. doi: 10.1023/a:1006427226972. [DOI] [PubMed] [Google Scholar]
  23. Finnegan E. J., Peacock W. J., Dennis E. S. Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8449–8454. doi: 10.1073/pnas.93.16.8449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Friedman W. E. Developmental and evolutionary hypotheses for the origin of double fertilization and endosperm. C R Acad Sci III. 2001 Jun;324(6):559–567. doi: 10.1016/s0764-4469(01)01326-9. [DOI] [PubMed] [Google Scholar]
  25. Gendrel Anne-Valérie, Lippman Zachary, Yordan Cristy, Colot Vincent, Martienssen Robert A. Dependence of heterochromatic histone H3 methylation patterns on the Arabidopsis gene DDM1. Science. 2002 Jun 20;297(5588):1871–1873. doi: 10.1126/science.1074950. [DOI] [PubMed] [Google Scholar]
  26. Goldberg R. B., de Paiva G., Yadegari R. Plant embryogenesis: zygote to seed. Science. 1994 Oct 28;266(5185):605–614. doi: 10.1126/science.266.5185.605. [DOI] [PubMed] [Google Scholar]
  27. Gong Zhizhong, Morales-Ruiz Teresa, Ariza Rafael R., Roldán-Arjona Teresa, David Lisa, Zhu Jian Kang. ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase. Cell. 2002 Dec 13;111(6):803–814. doi: 10.1016/s0092-8674(02)01133-9. [DOI] [PubMed] [Google Scholar]
  28. Grossniklaus U., Vielle-Calzada J. P., Hoeppner M. A., Gagliano W. B. Maternal control of embryogenesis by MEDEA, a polycomb group gene in Arabidopsis. Science. 1998 Apr 17;280(5362):446–450. doi: 10.1126/science.280.5362.446. [DOI] [PubMed] [Google Scholar]
  29. Hark A. T., Schoenherr C. J., Katz D. J., Ingram R. S., Levorse J. M., Tilghman S. M. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature. 2000 May 25;405(6785):486–489. doi: 10.1038/35013106. [DOI] [PubMed] [Google Scholar]
  30. Henikoff S., Comai L. A DNA methyltransferase homolog with a chromodomain exists in multiple polymorphic forms in Arabidopsis. Genetics. 1998 May;149(1):307–318. doi: 10.1093/genetics/149.1.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Higashiyama T., Yabe S., Sasaki N., Nishimura Y., Miyagishima S, Kuroiwa H., Kuroiwa T. Pollen tube attraction by the synergid cell. Science. 2001 Aug 24;293(5534):1480–1483. doi: 10.1126/science.1062429. [DOI] [PubMed] [Google Scholar]
  32. Jackson James P., Lindroth Anders M., Cao Xiaofeng, Jacobsen Steven E. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature. 2002 Mar 17;416(6880):556–560. doi: 10.1038/nature731. [DOI] [PubMed] [Google Scholar]
  33. Jacobsen S. E., Sakai H., Finnegan E. J., Cao X., Meyerowitz E. M. Ectopic hypermethylation of flower-specific genes in Arabidopsis. Curr Biol. 2000 Feb 24;10(4):179–186. doi: 10.1016/s0960-9822(00)00324-9. [DOI] [PubMed] [Google Scholar]
  34. Jeddeloh J. A., Stokes T. L., Richards E. J. Maintenance of genomic methylation requires a SWI2/SNF2-like protein. Nat Genet. 1999 May;22(1):94–97. doi: 10.1038/8803. [DOI] [PubMed] [Google Scholar]
  35. Jenuwein T., Allis C. D. Translating the histone code. Science. 2001 Aug 10;293(5532):1074–1080. doi: 10.1126/science.1063127. [DOI] [PubMed] [Google Scholar]
  36. Johnson Lianna, Cao Xiaofeng, Jacobsen Steven. Interplay between two epigenetic marks. DNA methylation and histone H3 lysine 9 methylation. Curr Biol. 2002 Aug 20;12(16):1360–1367. doi: 10.1016/s0960-9822(02)00976-4. [DOI] [PubMed] [Google Scholar]
  37. Johnston S. A., Hanneman R. E., Jr Manipulations of endosperm balance number overcome crossing barriers between diploid solanum species. Science. 1982 Jul 30;217(4558):446–448. doi: 10.1126/science.217.4558.446. [DOI] [PubMed] [Google Scholar]
  38. Kankel Mark W., Ramsey Douglas E., Stokes Trevor L., Flowers Susan K., Haag Jeremy R., Jeddeloh Jeffrey A., Riddle Nicole C., Verbsky Michelle L., Richards Eric J. Arabidopsis MET1 cytosine methyltransferase mutants. Genetics. 2003 Mar;163(3):1109–1122. doi: 10.1093/genetics/163.3.1109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Kermicle J. L. Dependence of the R-mottled aleurone phenotype in maize on mode of sexual transmission. Genetics. 1970 Sep;66(1):69–85. doi: 10.1093/genetics/66.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Kinoshita T., Yadegari R., Harada J. J., Goldberg R. B., Fischer R. L. Imprinting of the MEDEA polycomb gene in the Arabidopsis endosperm. Plant Cell. 1999 Oct;11(10):1945–1952. doi: 10.1105/tpc.11.10.1945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Kinoshita Tetsu, Miura Asuka, Choi Yeonhee, Kinoshita Yuki, Cao Xiaofeng, Jacobsen Steven E., Fischer Robert L., Kakutani Tetsuji. One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation. Science. 2003 Nov 20;303(5657):521–523. doi: 10.1126/science.1089835. [DOI] [PubMed] [Google Scholar]
  42. Kiyosue T., Ohad N., Yadegari R., Hannon M., Dinneny J., Wells D., Katz A., Margossian L., Harada J. J., Goldberg R. B. Control of fertilization-independent endosperm development by the MEDEA polycomb gene in Arabidopsis. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):4186–4191. doi: 10.1073/pnas.96.7.4186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Koltunow A. M. Apomixis: Embryo Sacs and Embryos Formed without Meiosis or Fertilization in Ovules. Plant Cell. 1993 Oct;5(10):1425–1437. doi: 10.1105/tpc.5.10.1425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Köhler Claudia, Hennig Lars, Spillane Charles, Pien Stephane, Gruissem Wilhelm, Grossniklaus Ueli. The Polycomb-group protein MEDEA regulates seed development by controlling expression of the MADS-box gene PHERES1. Genes Dev. 2003 Jun 15;17(12):1540–1553. doi: 10.1101/gad.257403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Leblanc Olivier, Pointe Céline, Hernandez Martha. Cell cycle progression during endosperm development in Zea mays depends on parental dosage effects. Plant J. 2002 Dec;32(6):1057–1066. doi: 10.1046/j.1365-313x.2002.01491.x. [DOI] [PubMed] [Google Scholar]
  46. Lin B. Y. Association of endosperm reduction with parental imprinting in maize. Genetics. 1982 Mar;100(3):475–486. doi: 10.1093/genetics/100.3.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Lin B. Y. Ploidy barrier to endosperm development in maize. Genetics. 1984 May;107(1):103–115. doi: 10.1093/genetics/107.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Lindroth A. M., Cao X., Jackson J. P., Zilberman D., McCallum C. M., Henikoff S., Jacobsen S. E. Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Science. 2001 May 10;292(5524):2077–2080. doi: 10.1126/science.1059745. [DOI] [PubMed] [Google Scholar]
  49. Lopes M. A., Larkins B. A. Endosperm origin, development, and function. Plant Cell. 1993 Oct;5(10):1383–1399. doi: 10.1105/tpc.5.10.1383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Lund G., Ciceri P., Viotti A. Maternal-specific demethylation and expression of specific alleles of zein genes in the endosperm of Zea mays L. Plant J. 1995 Oct;8(4):571–581. doi: 10.1046/j.1365-313x.1995.8040571.x. [DOI] [PubMed] [Google Scholar]
  51. Luo M., Bilodeau P., Dennis E. S., Peacock W. J., Chaudhury A. Expression and parent-of-origin effects for FIS2, MEA, and FIE in the endosperm and embryo of developing Arabidopsis seeds. Proc Natl Acad Sci U S A. 2000 Sep 12;97(19):10637–10642. doi: 10.1073/pnas.170292997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Luo M., Bilodeau P., Koltunow A., Dennis E. S., Peacock W. J., Chaudhury A. M. Genes controlling fertilization-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1999 Jan 5;96(1):296–301. doi: 10.1073/pnas.96.1.296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Mager Jesse, Montgomery Nathan D., de Villena Fernando Pardo-Manuel, Magnuson Terry. Genome imprinting regulated by the mouse Polycomb group protein Eed. Nat Genet. 2003 Mar 10;33(4):502–507. doi: 10.1038/ng1125. [DOI] [PubMed] [Google Scholar]
  54. McGrath J., Solter D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell. 1984 May;37(1):179–183. doi: 10.1016/0092-8674(84)90313-1. [DOI] [PubMed] [Google Scholar]
  55. Müller Jürg, Hart Craig M., Francis Nicole J., Vargas Marcus L., Sengupta Aditya, Wild Brigitte, Miller Ellen L., O'Connor Michael B., Kingston Robert E., Simon Jeffrey A. Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell. 2002 Oct 18;111(2):197–208. doi: 10.1016/s0092-8674(02)00976-5. [DOI] [PubMed] [Google Scholar]
  56. Ohad N., Margossian L., Hsu Y. C., Williams C., Repetti P., Fischer R. L. A mutation that allows endosperm development without fertilization. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5319–5324. doi: 10.1073/pnas.93.11.5319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Ohad N., Yadegari R., Margossian L., Hannon M., Michaeli D., Harada J. J., Goldberg R. B., Fischer R. L. Mutations in FIE, a WD polycomb group gene, allow endosperm development without fertilization. Plant Cell. 1999 Mar;11(3):407–416. doi: 10.1105/tpc.11.3.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Orlando Valerio. Polycomb, epigenomes, and control of cell identity. Cell. 2003 Mar 7;112(5):599–606. doi: 10.1016/s0092-8674(03)00157-0. [DOI] [PubMed] [Google Scholar]
  59. Paldi Andras. Genomic imprinting: could the chromatin structure be the driving force? Curr Top Dev Biol. 2003;53:115–138. doi: 10.1016/s0070-2153(03)53003-4. [DOI] [PubMed] [Google Scholar]
  60. Papa C. M., Springer N. M., Muszynski M. G., Meeley R., Kaeppler S. M. Maize chromomethylase Zea methyltransferase2 is required for CpNpG methylation. Plant Cell. 2001 Aug;13(8):1919–1928. doi: 10.1105/TPC.010064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Reik W., Dean W., Walter J. Epigenetic reprogramming in mammalian development. Science. 2001 Aug 10;293(5532):1089–1093. doi: 10.1126/science.1063443. [DOI] [PubMed] [Google Scholar]
  62. Reik W., Walter J. Genomic imprinting: parental influence on the genome. Nat Rev Genet. 2001 Jan;2(1):21–32. doi: 10.1038/35047554. [DOI] [PubMed] [Google Scholar]
  63. Sarkar K. R., Coe E. H. A genetic analysis of the origin of maternal haploids in maize. Genetics. 1966 Aug;54(2):453–464. doi: 10.1093/genetics/54.2.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Saze Hidetoshi, Mittelsten Scheid Ortrun, Paszkowski Jerzy. Maintenance of CpG methylation is essential for epigenetic inheritance during plant gametogenesis. Nat Genet. 2003 May;34(1):65–69. doi: 10.1038/ng1138. [DOI] [PubMed] [Google Scholar]
  65. Schubert Daniel, Goodrich Justin. Plant epigenetics: MEDEA's children take centre stage. Curr Biol. 2003 Aug 19;13(16):R638–R640. doi: 10.1016/s0960-9822(03)00569-4. [DOI] [PubMed] [Google Scholar]
  66. Scott R. J., Spielman M., Bailey J., Dickinson H. G. Parent-of-origin effects on seed development in Arabidopsis thaliana. Development. 1998 Sep;125(17):3329–3341. doi: 10.1242/dev.125.17.3329. [DOI] [PubMed] [Google Scholar]
  67. Seitz Hervé, Youngson Neil, Lin Shau-Ping, Dalbert Simone, Paulsen Martina, Bachellerie Jean-Pierre, Ferguson-Smith Anne C., Cavaillé Jérôme. Imprinted microRNA genes transcribed antisense to a reciprocally imprinted retrotransposon-like gene. Nat Genet. 2003 Jul;34(3):261–262. doi: 10.1038/ng1171. [DOI] [PubMed] [Google Scholar]
  68. Sleutels Frank, Zwart Ronald, Barlow Denise P. The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature. 2002 Feb 14;415(6873):810–813. doi: 10.1038/415810a. [DOI] [PubMed] [Google Scholar]
  69. Soppe W. J., Jacobsen S. E., Alonso-Blanco C., Jackson J. P., Kakutani T., Koornneef M., Peeters A. J. The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene. Mol Cell. 2000 Oct;6(4):791–802. doi: 10.1016/s1097-2765(05)00090-0. [DOI] [PubMed] [Google Scholar]
  70. Soppe Wim J. J., Jasencakova Zuzana, Houben Andreas, Kakutani Tetsuji, Meister Armin, Huang Michael S., Jacobsen Steven E., Schubert Ingo, Fransz Paul F. DNA methylation controls histone H3 lysine 9 methylation and heterochromatin assembly in Arabidopsis. EMBO J. 2002 Dec 2;21(23):6549–6559. doi: 10.1093/emboj/cdf657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Spillane C., MacDougall C., Stock C., Köhler C., Vielle-Calzada J. P., Nunes S. M., Grossniklaus U., Goodrich J. Interaction of the Arabidopsis polycomb group proteins FIE and MEA mediates their common phenotypes. Curr Biol. 2000 Nov 30;10(23):1535–1538. doi: 10.1016/s0960-9822(00)00839-3. [DOI] [PubMed] [Google Scholar]
  72. Surani M. A., Barton S. C., Norris M. L. Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature. 1984 Apr 5;308(5959):548–550. doi: 10.1038/308548a0. [DOI] [PubMed] [Google Scholar]
  73. Sørensen M. B., Chaudhury A. M., Robert H., Bancharel E., Berger F. Polycomb group genes control pattern formation in plant seed. Curr Biol. 2001 Feb 20;11(4):277–281. doi: 10.1016/s0960-9822(01)00072-0. [DOI] [PubMed] [Google Scholar]
  74. Tamaru H., Selker E. U. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature. 2001 Nov 15;414(6861):277–283. doi: 10.1038/35104508. [DOI] [PubMed] [Google Scholar]
  75. Tariq Muhammad, Saze Hidetoshi, Probst Aline V., Lichota Jacek, Habu Yoshiki, Paszkowski Jerzy. Erasure of CpG methylation in Arabidopsis alters patterns of histone H3 methylation in heterochromatin. Proc Natl Acad Sci U S A. 2003 Jul 9;100(15):8823–8827. doi: 10.1073/pnas.1432939100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Tie Feng, Prasad-Sinha Jayashree, Birve Anna, Rasmuson-Lestander Asa, Harte Peter J. A 1-megadalton ESC/E(Z) complex from Drosophila that contains polycomblike and RPD3. Mol Cell Biol. 2003 May;23(9):3352–3362. doi: 10.1128/MCB.23.9.3352-3362.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Turner Bryan M. Cellular memory and the histone code. Cell. 2002 Nov 1;111(3):285–291. doi: 10.1016/s0092-8674(02)01080-2. [DOI] [PubMed] [Google Scholar]
  78. Tycko Benjamin, Morison Ian M. Physiological functions of imprinted genes. J Cell Physiol. 2002 Sep;192(3):245–258. doi: 10.1002/jcp.10129. [DOI] [PubMed] [Google Scholar]
  79. Vielle-Calzada J. P., Baskar R., Grossniklaus U. Delayed activation of the paternal genome during seed development. Nature. 2000 Mar 2;404(6773):91–94. doi: 10.1038/35003595. [DOI] [PubMed] [Google Scholar]
  80. Vielle-Calzada J. P., Thomas J., Spillane C., Coluccio A., Hoeppner M. A., Grossniklaus U. Maintenance of genomic imprinting at the Arabidopsis medea locus requires zygotic DDM1 activity. Genes Dev. 1999 Nov 15;13(22):2971–2982. doi: 10.1101/gad.13.22.2971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Vongs A., Kakutani T., Martienssen R. A., Richards E. J. Arabidopsis thaliana DNA methylation mutants. Science. 1993 Jun 25;260(5116):1926–1928. doi: 10.1126/science.8316832. [DOI] [PubMed] [Google Scholar]
  82. Wang J., Mager J., Chen Y., Schneider E., Cross J. C., Nagy A., Magnuson T. Imprinted X inactivation maintained by a mouse Polycomb group gene. Nat Genet. 2001 Aug;28(4):371–375. doi: 10.1038/ng574. [DOI] [PubMed] [Google Scholar]
  83. Weijers D., Geldner N., Offringa R., Jürgens G. Seed development: Early paternal gene activity in Arabidopsis. Nature. 2001 Dec 13;414(6865):709–710. doi: 10.1038/414709a. [DOI] [PubMed] [Google Scholar]
  84. Xiao Wenyan, Gehring Mary, Choi Yeonhee, Margossian Linda, Pu Hong, Harada John J., Goldberg Robert B., Pennell Roger I., Fischer Robert L. Imprinting of the MEA Polycomb gene is controlled by antagonism between MET1 methyltransferase and DME glycosylase. Dev Cell. 2003 Dec;5(6):891–901. doi: 10.1016/s1534-5807(03)00361-7. [DOI] [PubMed] [Google Scholar]
  85. Yadegari R., Kinoshita T., Lotan O., Cohen G., Katz A., Choi Y., Katz A., Nakashima K., Harada J. J., Goldberg R. B. Mutations in the FIE and MEA genes that encode interacting polycomb proteins cause parent-of-origin effects on seed development by distinct mechanisms. Plant Cell. 2000 Dec;12(12):2367–2382. doi: 10.1105/tpc.12.12.2367. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES