Skip to main content
The Plant Cell logoLink to The Plant Cell
. 2004 Mar 12;16(Suppl):S1–17. doi: 10.1105/tpc.017038

Molecular and genetic mechanisms of floral control.

Thomas Jack 1
PMCID: PMC2643400  PMID: 15020744

Full Text

The Full Text of this article is available as a PDF (212.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarez-Buylla E. R., Pelaz S., Liljegren S. J., Gold S. E., Burgeff C., Ditta G. S., Ribas de Pouplana L., Martínez-Castilla L., Yanofsky M. F. An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc Natl Acad Sci U S A. 2000 May 9;97(10):5328–5333. doi: 10.1073/pnas.97.10.5328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ambrose B. A., Lerner D. R., Ciceri P., Padilla C. M., Yanofsky M. F., Schmidt R. J. Molecular and genetic analyses of the silky1 gene reveal conservation in floral organ specification between eudicots and monocots. Mol Cell. 2000 Mar;5(3):569–579. doi: 10.1016/s1097-2765(00)80450-5. [DOI] [PubMed] [Google Scholar]
  3. Angenent G. C., Franken J., Busscher M., Weiss D., van Tunen A. J. Co-suppression of the petunia homeotic gene fbp2 affects the identity of the generative meristem. Plant J. 1994 Jan;5(1):33–44. doi: 10.1046/j.1365-313x.1994.5010033.x. [DOI] [PubMed] [Google Scholar]
  4. Angenent G. C., Franken J., Busscher M., van Dijken A., van Went J. L., Dons H. J., van Tunen A. J. A novel class of MADS box genes is involved in ovule development in petunia. Plant Cell. 1995 Oct;7(10):1569–1582. doi: 10.1105/tpc.7.10.1569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Aukerman Milo J., Sakai Hajime. Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell. 2003 Oct 10;15(11):2730–2741. doi: 10.1105/tpc.016238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bartel Bonnie, Bartel David P. MicroRNAs: at the root of plant development? Plant Physiol. 2003 Jun;132(2):709–717. doi: 10.1104/pp.103.023630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Blazquez MA, Green R, Nilsson O, Sussman MR, Weigel D. Gibberellins promote flowering of arabidopsis by activating the LEAFY promoter . Plant Cell. 1998 May;10(5):791–800. doi: 10.1105/tpc.10.5.791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Blázquez M. A., Soowal L. N., Lee I., Weigel D. LEAFY expression and flower initiation in Arabidopsis. Development. 1997 Oct;124(19):3835–3844. doi: 10.1242/dev.124.19.3835. [DOI] [PubMed] [Google Scholar]
  9. Blázquez M. A., Weigel D. Integration of floral inductive signals in Arabidopsis. Nature. 2000 Apr 20;404(6780):889–892. doi: 10.1038/35009125. [DOI] [PubMed] [Google Scholar]
  10. Bomblies K., Dagenais N., Weigel D. Redundant enhancers mediate transcriptional repression of AGAMOUS by APETALA2. Dev Biol. 1999 Dec 1;216(1):260–264. doi: 10.1006/dbio.1999.9504. [DOI] [PubMed] [Google Scholar]
  11. Borner R., Kampmann G., Chandler J., Gleissner R., Wisman E., Apel K., Melzer S. A MADS domain gene involved in the transition to flowering in Arabidopsis. Plant J. 2000 Dec;24(5):591–599. doi: 10.1046/j.1365-313x.2000.00906.x. [DOI] [PubMed] [Google Scholar]
  12. Bowman J. L., Smyth D. R., Meyerowitz E. M. Genes directing flower development in Arabidopsis. Plant Cell. 1989 Jan;1(1):37–52. doi: 10.1105/tpc.1.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Bowman J. L., Smyth D. R., Meyerowitz E. M. Genetic interactions among floral homeotic genes of Arabidopsis. Development. 1991 May;112(1):1–20. doi: 10.1242/dev.112.1.1. [DOI] [PubMed] [Google Scholar]
  14. Bradley D., Carpenter R., Copsey L., Vincent C., Rothstein S., Coen E. Control of inflorescence architecture in Antirrhinum. Nature. 1996 Feb 29;379(6568):791–797. doi: 10.1038/379791a0. [DOI] [PubMed] [Google Scholar]
  15. Bradley D., Carpenter R., Sommer H., Hartley N., Coen E. Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of Antirrhinum. Cell. 1993 Jan 15;72(1):85–95. doi: 10.1016/0092-8674(93)90052-r. [DOI] [PubMed] [Google Scholar]
  16. Bradley D., Ratcliffe O., Vincent C., Carpenter R., Coen E. Inflorescence commitment and architecture in Arabidopsis. Science. 1997 Jan 3;275(5296):80–83. doi: 10.1126/science.275.5296.80. [DOI] [PubMed] [Google Scholar]
  17. Busch M. A., Bomblies K., Weigel D. Activation of a floral homeotic gene in Arabidopsis. Science. 1999 Jul 23;285(5427):585–587. doi: 10.1126/science.285.5427.585. [DOI] [PubMed] [Google Scholar]
  18. Byzova M. V., Franken J., Aarts M. G., de Almeida-Engler J., Engler G., Mariani C., Van Lookeren Campagne M. M., Angenent G. C. Arabidopsis STERILE APETALA, a multifunctional gene regulating inflorescence, flower, and ovule development. Genes Dev. 1999 Apr 15;13(8):1002–1014. doi: 10.1101/gad.13.8.1002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Carpenter R., Coen E. S. Floral homeotic mutations produced by transposon-mutagenesis in Antirrhinum majus. Genes Dev. 1990 Sep;4(9):1483–1493. doi: 10.1101/gad.4.9.1483. [DOI] [PubMed] [Google Scholar]
  20. Carrington James C., Ambros Victor. Role of microRNAs in plant and animal development. Science. 2003 Jul 18;301(5631):336–338. doi: 10.1126/science.1085242. [DOI] [PubMed] [Google Scholar]
  21. Chen X., Meyerowitz E. M. HUA1 and HUA2 are two members of the floral homeotic AGAMOUS pathway. Mol Cell. 1999 Mar;3(3):349–360. doi: 10.1016/s1097-2765(00)80462-1. [DOI] [PubMed] [Google Scholar]
  22. Chen Xuemei. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science. 2003 Jul 31;303(5666):2022–2025. doi: 10.1126/science.1088060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Chen Xuemei, Liu Jun, Cheng Yulan, Jia Dongxuan. HEN1 functions pleiotropically in Arabidopsis development and acts in C function in the flower. Development. 2002 Mar;129(5):1085–1094. doi: 10.1242/dev.129.5.1085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Cheng Yulan, Kato Naohiro, Wang Wenming, Li Junjie, Chen Xuemei. Two RNA binding proteins, HEN4 and HUA1, act in the processing of AGAMOUS pre-mRNA in Arabidopsis thaliana. Dev Cell. 2003 Jan;4(1):53–66. doi: 10.1016/s1534-5807(02)00399-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Coen E. S., Meyerowitz E. M. The war of the whorls: genetic interactions controlling flower development. Nature. 1991 Sep 5;353(6339):31–37. doi: 10.1038/353031a0. [DOI] [PubMed] [Google Scholar]
  26. Coen E. S., Romero J. M., Doyle S., Elliott R., Murphy G., Carpenter R. floricaula: a homeotic gene required for flower development in antirrhinum majus. Cell. 1990 Dec 21;63(6):1311–1322. doi: 10.1016/0092-8674(90)90426-f. [DOI] [PubMed] [Google Scholar]
  27. Colombo L., Franken J., Koetje E., van Went J., Dons H. J., Angenent G. C., van Tunen A. J. The petunia MADS box gene FBP11 determines ovule identity. Plant Cell. 1995 Nov;7(11):1859–1868. doi: 10.1105/tpc.7.11.1859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Conner J., Liu Z. LEUNIG, a putative transcriptional corepressor that regulates AGAMOUS expression during flower development. Proc Natl Acad Sci U S A. 2000 Nov 7;97(23):12902–12907. doi: 10.1073/pnas.230352397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Corbit Kevin C., Trakul Nicholas, Eves Eva M., Diaz Bruce, Marshall Mark, Rosner Marsha Rich. Activation of Raf-1 signaling by protein kinase C through a mechanism involving Raf kinase inhibitory protein. J Biol Chem. 2003 Jan 27;278(15):13061–13068. doi: 10.1074/jbc.M210015200. [DOI] [PubMed] [Google Scholar]
  30. De Bodt Stefanie, Raes Jeroen, Florquin Kobe, Rombauts Stephane, Rouzé Pierre, Theissen Günter, Van de Peer Yves. Genomewide structural annotation and evolutionary analysis of the type I MADS-box genes in plants. J Mol Evol. 2003 May;56(5):573–586. doi: 10.1007/s00239-002-2426-x. [DOI] [PubMed] [Google Scholar]
  31. Deyholos M. K., Sieburth L. E. Separable whorl-specific expression and negative regulation by enhancer elements within the AGAMOUS second intron. Plant Cell. 2000 Oct;12(10):1799–1810. doi: 10.1105/tpc.12.10.1799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Drews G. N., Bowman J. L., Meyerowitz E. M. Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product. Cell. 1991 Jun 14;65(6):991–1002. doi: 10.1016/0092-8674(91)90551-9. [DOI] [PubMed] [Google Scholar]
  33. Durfee Tim, Roe Judith L., Sessions R. Allen, Inouye Carla, Serikawa Kyle, Feldmann Kenneth A., Weigel Detlef, Zambryski Patricia C. The F-box-containing protein UFO and AGAMOUS participate in antagonistic pathways governing early petal development in Arabidopsis. Proc Natl Acad Sci U S A. 2003 Jun 25;100(14):8571–8576. doi: 10.1073/pnas.1033043100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Egea-Cortines M., Saedler H., Sommer H. Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO J. 1999 Oct 1;18(19):5370–5379. doi: 10.1093/emboj/18.19.5370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Elliott R. C., Betzner A. S., Huttner E., Oakes M. P., Tucker W. Q., Gerentes D., Perez P., Smyth D. R. AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell. 1996 Feb;8(2):155–168. doi: 10.1105/tpc.8.2.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Fan H. Y., Hu Y., Tudor M., Ma H. Specific interactions between the K domains of AG and AGLs, members of the MADS domain family of DNA binding proteins. Plant J. 1997 Nov;12(5):999–1010. doi: 10.1046/j.1365-313x.1997.12050999.x. [DOI] [PubMed] [Google Scholar]
  37. Favaro Rebecca, Pinyopich Anusak, Battaglia Raffaella, Kooiker Maarten, Borghi Lorenzo, Ditta Gary, Yanofsky Martin F., Kater Martin M., Colombo Lucia. MADS-box protein complexes control carpel and ovule development in Arabidopsis. Plant Cell. 2003 Oct 10;15(11):2603–2611. doi: 10.1105/tpc.015123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Ferrario Silvia, Immink Richard G. H., Shchennikova Anna, Busscher-Lange Jacqueline, Angenent Gerco C. The MADS box gene FBP2 is required for SEPALLATA function in petunia. Plant Cell. 2003 Apr;15(4):914–925. doi: 10.1105/tpc.010280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Ferrándiz C., Gu Q., Martienssen R., Yanofsky M. F. Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development. 2000 Feb;127(4):725–734. doi: 10.1242/dev.127.4.725. [DOI] [PubMed] [Google Scholar]
  40. Franks Robert G., Wang Chunxin, Levin Joshua Z., Liu Zhongchi. SEUSS, a member of a novel family of plant regulatory proteins, represses floral homeotic gene expression with LEUNIG. Development. 2002 Jan;129(1):253–263. doi: 10.1242/dev.129.1.253. [DOI] [PubMed] [Google Scholar]
  41. Gendall A. R., Levy Y. Y., Wilson A., Dean C. The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell. 2001 Nov 16;107(4):525–535. doi: 10.1016/s0092-8674(01)00573-6. [DOI] [PubMed] [Google Scholar]
  42. Gocal G. F., King R. W., Blundell C. A., Schwartz O. M., Andersen C. H., Weigel D. Evolution of floral meristem identity genes. Analysis of Lolium temulentum genes related to APETALA1 and LEAFY of Arabidopsis. Plant Physiol. 2001 Apr;125(4):1788–1801. doi: 10.1104/pp.125.4.1788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Golden Teresa A., Schauer Stephen E., Lang Jean D., Pien Stéphane, Mushegian Arcady R., Grossniklaus Ueli, Meinke David W., Ray Animesh. SHORT INTEGUMENTS1/SUSPENSOR1/CARPEL FACTORY, a Dicer homolog, is a maternal effect gene required for embryo development in Arabidopsis. Plant Physiol. 2002 Oct;130(2):808–822. doi: 10.1104/pp.003491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Goodrich J., Puangsomlee P., Martin M., Long D., Meyerowitz E. M., Coupland G. A Polycomb-group gene regulates homeotic gene expression in Arabidopsis. Nature. 1997 Mar 6;386(6620):44–51. doi: 10.1038/386044a0. [DOI] [PubMed] [Google Scholar]
  45. Goto K., Kyozuka J., Bowman J. L. Turning floral organs into leaves, leaves into floral organs. Curr Opin Genet Dev. 2001 Aug;11(4):449–456. doi: 10.1016/s0959-437x(00)00216-1. [DOI] [PubMed] [Google Scholar]
  46. Goto K., Meyerowitz E. M. Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev. 1994 Jul 1;8(13):1548–1560. doi: 10.1101/gad.8.13.1548. [DOI] [PubMed] [Google Scholar]
  47. Gu Q., Ferrándiz C., Yanofsky M. F., Martienssen R. The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development. 1998 Apr;125(8):1509–1517. doi: 10.1242/dev.125.8.1509. [DOI] [PubMed] [Google Scholar]
  48. Gustafson-Brown C., Savidge B., Yanofsky M. F. Regulation of the arabidopsis floral homeotic gene APETALA1. Cell. 1994 Jan 14;76(1):131–143. doi: 10.1016/0092-8674(94)90178-3. [DOI] [PubMed] [Google Scholar]
  49. Hartmann U., Höhmann S., Nettesheim K., Wisman E., Saedler H., Huijser P. Molecular cloning of SVP: a negative regulator of the floral transition in Arabidopsis. Plant J. 2000 Feb;21(4):351–360. doi: 10.1046/j.1365-313x.2000.00682.x. [DOI] [PubMed] [Google Scholar]
  50. Hayama Ryosuke, Coupland George. Shedding light on the circadian clock and the photoperiodic control of flowering. Curr Opin Plant Biol. 2003 Feb;6(1):13–19. doi: 10.1016/s1369-5266(02)00011-0. [DOI] [PubMed] [Google Scholar]
  51. He Yuehui, Michaels Scott D., Amasino Richard M. Regulation of flowering time by histone acetylation in Arabidopsis. Science. 2003 Oct 30;302(5651):1751–1754. doi: 10.1126/science.1091109. [DOI] [PubMed] [Google Scholar]
  52. Hepworth Shelley R., Valverde Federico, Ravenscroft Dean, Mouradov Aidyn, Coupland George. Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. EMBO J. 2002 Aug 15;21(16):4327–4337. doi: 10.1093/emboj/cdf432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Hill T. A., Day C. D., Zondlo S. C., Thackeray A. G., Irish V. F. Discrete spatial and temporal cis-acting elements regulate transcription of the Arabidopsis floral homeotic gene APETALA3. Development. 1998 May;125(9):1711–1721. doi: 10.1242/dev.125.9.1711. [DOI] [PubMed] [Google Scholar]
  54. Honma T., Goto K. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature. 2001 Jan 25;409(6819):525–529. doi: 10.1038/35054083. [DOI] [PubMed] [Google Scholar]
  55. Huang H., Tudor M., Su T., Zhang Y., Hu Y., Ma H. DNA binding properties of two Arabidopsis MADS domain proteins: binding consensus and dimer formation. Plant Cell. 1996 Jan;8(1):81–94. doi: 10.1105/tpc.8.1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Huijser P., Klein J., Lönnig W. E., Meijer H., Saedler H., Sommer H. Bracteomania, an inflorescence anomaly, is caused by the loss of function of the MADS-box gene squamosa in Antirrhinum majus. EMBO J. 1992 Apr;11(4):1239–1249. doi: 10.1002/j.1460-2075.1992.tb05168.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Immink R. G. H., Ferrario S., Busscher-Lange J., Kooiker M., Busscher M., Angenent G. C. Analysis of the petunia MADS-box transcription factor family. Mol Genet Genomics. 2003 Jan 15;268(5):598–606. doi: 10.1007/s00438-002-0781-3. [DOI] [PubMed] [Google Scholar]
  58. Immink Richard G. H., Gadella Theodorus W. J., Jr, Ferrario Silvia, Busscher Marco, Angenent Gerco C. Analysis of MADS box protein-protein interactions in living plant cells. Proc Natl Acad Sci U S A. 2002 Feb 19;99(4):2416–2421. doi: 10.1073/pnas.042677699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Ingram G. C., Goodrich J., Wilkinson M. D., Simon R., Haughn G. W., Coen E. S. Parallels between UNUSUAL FLORAL ORGANS and FIMBRIATA, genes controlling flower development in Arabidopsis and Antirrhinum. Plant Cell. 1995 Sep;7(9):1501–1510. doi: 10.1105/tpc.7.9.1501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Irish V. F., Sussex I. M. Function of the apetala-1 gene during Arabidopsis floral development. Plant Cell. 1990 Aug;2(8):741–753. doi: 10.1105/tpc.2.8.741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Jack T., Fox G. L., Meyerowitz E. M. Arabidopsis homeotic gene APETALA3 ectopic expression: transcriptional and posttranscriptional regulation determine floral organ identity. Cell. 1994 Feb 25;76(4):703–716. doi: 10.1016/0092-8674(94)90509-6. [DOI] [PubMed] [Google Scholar]
  62. Jack T. Relearning our ABCs: new twists on an old model. Trends Plant Sci. 2001 Jul;6(7):310–316. doi: 10.1016/s1360-1385(01)01987-2. [DOI] [PubMed] [Google Scholar]
  63. Jacobsen S. E., Running M. P., Meyerowitz E. M. Disruption of an RNA helicase/RNAse III gene in Arabidopsis causes unregulated cell division in floral meristems. Development. 1999 Dec;126(23):5231–5243. doi: 10.1242/dev.126.23.5231. [DOI] [PubMed] [Google Scholar]
  64. Jofuku K. D., den Boer B. G., Van Montagu M., Okamuro J. K. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell. 1994 Sep;6(9):1211–1225. doi: 10.1105/tpc.6.9.1211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Johanson U., West J., Lister C., Michaels S., Amasino R., Dean C. Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science. 2000 Oct 13;290(5490):344–347. doi: 10.1126/science.290.5490.344. [DOI] [PubMed] [Google Scholar]
  66. Kardailsky I., Shukla V. K., Ahn J. H., Dagenais N., Christensen S. K., Nguyen J. T., Chory J., Harrison M. J., Weigel D. Activation tagging of the floral inducer FT. Science. 1999 Dec 3;286(5446):1962–1965. doi: 10.1126/science.286.5446.1962. [DOI] [PubMed] [Google Scholar]
  67. Keck Emma, McSteen Paula, Carpenter Rosemary, Coen Enrico. Separation of genetic functions controlling organ identity in flowers. EMBO J. 2003 Mar 3;22(5):1058–1066. doi: 10.1093/emboj/cdg097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Kempin S. A., Savidge B., Yanofsky M. F. Molecular basis of the cauliflower phenotype in Arabidopsis. Science. 1995 Jan 27;267(5197):522–525. doi: 10.1126/science.7824951. [DOI] [PubMed] [Google Scholar]
  69. Klucher K. M., Chow H., Reiser L., Fischer R. L. The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. Plant Cell. 1996 Feb;8(2):137–153. doi: 10.1105/tpc.8.2.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Kobayashi Y., Kaya H., Goto K., Iwabuchi M., Araki T. A pair of related genes with antagonistic roles in mediating flowering signals. Science. 1999 Dec 3;286(5446):1960–1962. doi: 10.1126/science.286.5446.1960. [DOI] [PubMed] [Google Scholar]
  71. Koornneef M., Hanhart C. J., van der Veen J. H. A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet. 1991 Sep;229(1):57–66. doi: 10.1007/BF00264213. [DOI] [PubMed] [Google Scholar]
  72. Koornneef Maarten, Alonso-Blanco Carlos, Peeters Anton J. M., Soppe Wim. GENETIC CONTROL OF FLOWERING TIME IN ARABIDOPSIS. Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49(NaN):345–370. doi: 10.1146/annurev.arplant.49.1.345. [DOI] [PubMed] [Google Scholar]
  73. Krizek B. A., Meyerowitz E. M. The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function. Development. 1996 Jan;122(1):11–22. doi: 10.1242/dev.122.1.11. [DOI] [PubMed] [Google Scholar]
  74. Krizek B. A., Prost V., Macias A. AINTEGUMENTA promotes petal identity and acts as a negative regulator of AGAMOUS. Plant Cell. 2000 Aug;12(8):1357–1366. doi: 10.1105/tpc.12.8.1357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Köhler Claudia, Hennig Lars, Spillane Charles, Pien Stephane, Gruissem Wilhelm, Grossniklaus Ueli. The Polycomb-group protein MEDEA regulates seed development by controlling expression of the MADS-box gene PHERES1. Genes Dev. 2003 Jun 15;17(12):1540–1553. doi: 10.1101/gad.257403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Lamb Rebecca S., Hill Theresa A., Tan Queenie K-G, Irish Vivian F. Regulation of APETALA3 floral homeotic gene expression by meristem identity genes. Development. 2002 May;129(9):2079–2086. doi: 10.1242/dev.129.9.2079. [DOI] [PubMed] [Google Scholar]
  77. Lamb Rebecca S., Irish Vivian F. Functional divergence within the APETALA3/PISTILLATA floral homeotic gene lineages. Proc Natl Acad Sci U S A. 2003 May 13;100(11):6558–6563. doi: 10.1073/pnas.0631708100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Laufs Patrick, Coen Enrico, Kronenberger Jocelyne, Traas Jan, Doonan John. Separable roles of UFO during floral development revealed by conditional restoration of gene function. Development. 2003 Feb;130(4):785–796. doi: 10.1242/dev.00295. [DOI] [PubMed] [Google Scholar]
  79. Laux T., Mayer K. F., Berger J., Jürgens G. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development. 1996 Jan;122(1):87–96. doi: 10.1242/dev.122.1.87. [DOI] [PubMed] [Google Scholar]
  80. Lee H., Suh S. S., Park E., Cho E., Ahn J. H., Kim S. G., Lee J. S., Kwon Y. M., Lee I. The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Dev. 2000 Sep 15;14(18):2366–2376. doi: 10.1101/gad.813600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Lee I., Wolfe D. S., Nilsson O., Weigel D. A LEAFY co-regulator encoded by UNUSUAL FLORAL ORGANS. Curr Biol. 1997 Feb 1;7(2):95–104. doi: 10.1016/s0960-9822(06)00053-4. [DOI] [PubMed] [Google Scholar]
  82. Lenhard M., Bohnert A., Jürgens G., Laux T. Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS. Cell. 2001 Jun 15;105(6):805–814. doi: 10.1016/s0092-8674(01)00390-7. [DOI] [PubMed] [Google Scholar]
  83. Levin J. Z., Meyerowitz E. M. UFO: an Arabidopsis gene involved in both floral meristem and floral organ development. Plant Cell. 1995 May;7(5):529–548. doi: 10.1105/tpc.7.5.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Li J., Jia D., Chen X. HUA1, a regulator of stamen and carpel identities in Arabidopsis, codes for a nuclear RNA binding protein. Plant Cell. 2001 Oct;13(10):2269–2281. doi: 10.1105/tpc.010201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Liljegren S. J., Ditta G. S., Eshed Y., Savidge B., Bowman J. L., Yanofsky M. F. SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature. 2000 Apr 13;404(6779):766–770. doi: 10.1038/35008089. [DOI] [PubMed] [Google Scholar]
  86. Liljegren S. J., Gustafson-Brown C., Pinyopich A., Ditta G. S., Yanofsky M. F. Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 specify meristem fate. Plant Cell. 1999 Jun;11(6):1007–1018. doi: 10.1105/tpc.11.6.1007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Liu Z., Meyerowitz E. M. LEUNIG regulates AGAMOUS expression in Arabidopsis flowers. Development. 1995 Apr;121(4):975–991. doi: 10.1242/dev.121.4.975. [DOI] [PubMed] [Google Scholar]
  88. Lohmann J. U., Hong R. L., Hobe M., Busch M. A., Parcy F., Simon R., Weigel D. A molecular link between stem cell regulation and floral patterning in Arabidopsis. Cell. 2001 Jun 15;105(6):793–803. doi: 10.1016/s0092-8674(01)00384-1. [DOI] [PubMed] [Google Scholar]
  89. Lohmann Jan U., Weigel Detlef. Building beauty: the genetic control of floral patterning. Dev Cell. 2002 Feb;2(2):135–142. doi: 10.1016/s1534-5807(02)00122-3. [DOI] [PubMed] [Google Scholar]
  90. Maes T., Van de Steene N., Zethof J., Karimi M., D'Hauw M., Mares G., Van Montagu M., Gerats T. Petunia Ap2-like genes and their role in flower and seed development. Plant Cell. 2001 Feb;13(2):229–244. doi: 10.1105/tpc.13.2.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Maggioni M., Colombo M., Bruno E., Farronato G. P., Moro G. F. Analisi comparativa dei materiali compositi. Attual Dent. 1989 Jan 22;5(3):16-7, 19-22, 27. [PubMed] [Google Scholar]
  92. Mandel M. A., Gustafson-Brown C., Savidge B., Yanofsky M. F. Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature. 1992 Nov 19;360(6401):273–277. doi: 10.1038/360273a0. [DOI] [PubMed] [Google Scholar]
  93. Mandel M. A., Yanofsky M. F. A gene triggering flower formation in Arabidopsis. Nature. 1995 Oct 12;377(6549):522–524. doi: 10.1038/377522a0. [DOI] [PubMed] [Google Scholar]
  94. Mayer K. F., Schoof H., Haecker A., Lenhard M., Jürgens G., Laux T. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell. 1998 Dec 11;95(6):805–815. doi: 10.1016/s0092-8674(00)81703-1. [DOI] [PubMed] [Google Scholar]
  95. McGonigle B., Bouhidel K., Irish V. F. Nuclear localization of the Arabidopsis APETALA3 and PISTILLATA homeotic gene products depends on their simultaneous expression. Genes Dev. 1996 Jul 15;10(14):1812–1821. doi: 10.1101/gad.10.14.1812. [DOI] [PubMed] [Google Scholar]
  96. Michaels S. D., Amasino R. M. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell. 1999 May;11(5):949–956. doi: 10.1105/tpc.11.5.949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Michaels Scott D., Ditta Gary, Gustafson-Brown Cindy, Pelaz Soraya, Yanofsky Martin, Amasino Richard M. AGL24 acts as a promoter of flowering in Arabidopsis and is positively regulated by vernalization. Plant J. 2003 Mar;33(5):867–874. doi: 10.1046/j.1365-313x.2003.01671.x. [DOI] [PubMed] [Google Scholar]
  98. Mimida N., Goto K., Kobayashi Y., Araki T., Ahn J. H., Weigel D., Murata M., Motoyoshi F., Sakamoto W. Functional divergence of the TFL1-like gene family in Arabidopsis revealed by characterization of a novel homologue. Genes Cells. 2001 Apr;6(4):327–336. doi: 10.1046/j.1365-2443.2001.00425.x. [DOI] [PubMed] [Google Scholar]
  99. Moon Jihyun, Suh Sung-Suk, Lee Horim, Choi Kyu-Ri, Hong Choo Bong, Paek Nam-Chon, Kim Sang-Gu, Lee Ilha. The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant J. 2003 Sep;35(5):613–623. doi: 10.1046/j.1365-313x.2003.01833.x. [DOI] [PubMed] [Google Scholar]
  100. Moon Y. H., Kang H. G., Jung J. Y., Jeon J. S., Sung S. K., An G. Determination of the motif responsible for interaction between the rice APETALA1/AGAMOUS-LIKE9 family proteins using a yeast two-hybrid system. Plant Physiol. 1999 Aug;120(4):1193–1204. doi: 10.1104/pp.120.4.1193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Mouradov Aidyn, Cremer Frédéric, Coupland George. Control of flowering time: interacting pathways as a basis for diversity. Plant Cell. 2002;14 (Suppl):S111–S130. doi: 10.1105/tpc.001362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Ng M., Yanofsky M. F. Activation of the Arabidopsis B class homeotic genes by APETALA1. Plant Cell. 2001 Apr;13(4):739–753. doi: 10.1105/tpc.13.4.739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Ng M., Yanofsky M. F. Function and evolution of the plant MADS-box gene family. Nat Rev Genet. 2001 Mar;2(3):186–195. doi: 10.1038/35056041. [DOI] [PubMed] [Google Scholar]
  104. Nilsson O., Lee I., Blázquez M. A., Weigel D. Flowering-time genes modulate the response to LEAFY activity. Genetics. 1998 Sep;150(1):403–410. doi: 10.1093/genetics/150.1.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Noh Yoo-Sun, Amasino Richard M. PIE1, an ISWI family gene, is required for FLC activation and floral repression in Arabidopsis. Plant Cell. 2003 Jul;15(7):1671–1682. doi: 10.1105/tpc.012161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. Okamuro J. K., Caster B., Villarroel R., Van Montagu M., Jofuku K. D. The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):7076–7081. doi: 10.1073/pnas.94.13.7076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Okamuro J. K., Szeto W., Lotys-Prass C., Jofuku K. D. Photo and hormonal control of meristem identity in the Arabidopsis flower mutants apetala2 and apetala1. Plant Cell. 1997 Jan;9(1):37–47. doi: 10.1105/tpc.9.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Okamuro J. K., den Boer B. G., Lotys-Prass C., Szeto W., Jofuku K. D. Flowers into shoots: photo and hormonal control of a meristem identity switch in Arabidopsis. Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13831–13836. doi: 10.1073/pnas.93.24.13831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Olsen P. H., Ambros V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol. 1999 Dec 15;216(2):671–680. doi: 10.1006/dbio.1999.9523. [DOI] [PubMed] [Google Scholar]
  110. Onouchi H., Igeño M. I., Périlleux C., Graves K., Coupland G. Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-time genes. Plant Cell. 2000 Jun;12(6):885–900. doi: 10.1105/tpc.12.6.885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Orlando Valerio. Polycomb, epigenomes, and control of cell identity. Cell. 2003 Mar 7;112(5):599–606. doi: 10.1016/s0092-8674(03)00157-0. [DOI] [PubMed] [Google Scholar]
  112. doi: 10.1105/tpc.150410. [DOI] [PMC free article] [Google Scholar]
  113. Parcy F., Nilsson O., Busch M. A., Lee I., Weigel D. A genetic framework for floral patterning. Nature. 1998 Oct 8;395(6702):561–566. doi: 10.1038/26903. [DOI] [PubMed] [Google Scholar]
  114. Parenicová Lucie, de Folter Stefan, Kieffer Martin, Horner David S., Favalli Cristina, Busscher Jacqueline, Cook Holly E., Ingram Richard M., Kater Martin M., Davies Brendan. Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell. 2003 Jul;15(7):1538–1551. doi: 10.1105/tpc.011544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. Park Wonkeun, Li Junjie, Song Rentao, Messing Joachim, Chen Xuemei. CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol. 2002 Sep 3;12(17):1484–1495. doi: 10.1016/s0960-9822(02)01017-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Pelaz S., Ditta G. S., Baumann E., Wisman E., Yanofsky M. F. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature. 2000 May 11;405(6783):200–203. doi: 10.1038/35012103. [DOI] [PubMed] [Google Scholar]
  117. Pelaz S., Gustafson-Brown C., Kohalmi S. E., Crosby W. L., Yanofsky M. F. APETALA1 and SEPALLATA3 interact to promote flower development. Plant J. 2001 May;26(4):385–394. doi: 10.1046/j.1365-313x.2001.2641042.x. [DOI] [PubMed] [Google Scholar]
  118. Pelaz S., Tapia-López R., Alvarez-Buylla E. R., Yanofsky M. F. Conversion of leaves into petals in Arabidopsis. Curr Biol. 2001 Feb 6;11(3):182–184. doi: 10.1016/s0960-9822(01)00024-0. [DOI] [PubMed] [Google Scholar]
  119. Pinyopich Anusak, Ditta Gary S., Savidge Beth, Liljegren Sarah J., Baumann Elvira, Wisman Ellen, Yanofsky Martin F. Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature. 2003 Jul 3;424(6944):85–88. doi: 10.1038/nature01741. [DOI] [PubMed] [Google Scholar]
  120. Piñeiro Manuel, Gómez-Mena Concepción, Schaffer Robert, Martínez-Zapater José Miguel, Coupland George. EARLY BOLTING IN SHORT DAYS is related to chromatin remodeling factors and regulates flowering in Arabidopsis by repressing FT. Plant Cell. 2003 Jul;15(7):1552–1562. doi: 10.1105/tpc.012153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. Pnueli L., Hareven D., Broday L., Hurwitz C., Lifschitz E. The TM5 MADS Box Gene Mediates Organ Differentiation in the Three Inner Whorls of Tomato Flowers. Plant Cell. 1994 Feb;6(2):175–186. doi: 10.1105/tpc.6.2.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Putterill J., Robson F., Lee K., Simon R., Coupland G. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell. 1995 Mar 24;80(6):847–857. doi: 10.1016/0092-8674(95)90288-0. [DOI] [PubMed] [Google Scholar]
  123. Quesada Victor, Macknight Richard, Dean Caroline, Simpson Gordon G. Autoregulation of FCA pre-mRNA processing controls Arabidopsis flowering time. EMBO J. 2003 Jun 16;22(12):3142–3152. doi: 10.1093/emboj/cdg305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. Ratcliffe O. J., Amaya I., Vincent C. A., Rothstein S., Carpenter R., Coen E. S., Bradley D. J. A common mechanism controls the life cycle and architecture of plants. Development. 1998 May;125(9):1609–1615. doi: 10.1242/dev.125.9.1609. [DOI] [PubMed] [Google Scholar]
  125. Ratcliffe O. J., Bradley D. J., Coen E. S. Separation of shoot and floral identity in Arabidopsis. Development. 1999 Mar;126(6):1109–1120. doi: 10.1242/dev.126.6.1109. [DOI] [PubMed] [Google Scholar]
  126. Ray A., Lang J. D., Golden T., Ray S. SHORT INTEGUMENT (SIN1), a gene required for ovule development in Arabidopsis, also controls flowering time. Development. 1996 Sep;122(9):2631–2638. doi: 10.1242/dev.122.9.2631. [DOI] [PubMed] [Google Scholar]
  127. Reeves P. H., Coupland G. Response of plant development to environment: control of flowering by daylength and temperature. Curr Opin Plant Biol. 2000 Feb;3(1):37–42. doi: 10.1016/s1369-5266(99)00041-2. [DOI] [PubMed] [Google Scholar]
  128. Reinhart Brenda J., Weinstein Earl G., Rhoades Matthew W., Bartel Bonnie, Bartel David P. MicroRNAs in plants. Genes Dev. 2002 Jul 1;16(13):1616–1626. doi: 10.1101/gad.1004402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  129. Rhoades Matthew W., Reinhart Brenda J., Lim Lee P., Burge Christopher B., Bartel Bonnie, Bartel David P. Prediction of plant microRNA targets. Cell. 2002 Aug 23;110(4):513–520. doi: 10.1016/s0092-8674(02)00863-2. [DOI] [PubMed] [Google Scholar]
  130. Riechmann J. L., Krizek B. A., Meyerowitz E. M. Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc Natl Acad Sci U S A. 1996 May 14;93(10):4793–4798. doi: 10.1073/pnas.93.10.4793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Riechmann J. L., Meyerowitz E. M. MADS domain proteins in plant development. Biol Chem. 1997 Oct;378(10):1079–1101. [PubMed] [Google Scholar]
  132. Riechmann J. L., Meyerowitz E. M. The AP2/EREBP family of plant transcription factors. Biol Chem. 1998 Jun;379(6):633–646. doi: 10.1515/bchm.1998.379.6.633. [DOI] [PubMed] [Google Scholar]
  133. Riechmann J. L., Wang M., Meyerowitz E. M. DNA-binding properties of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA and AGAMOUS. Nucleic Acids Res. 1996 Aug 15;24(16):3134–3141. doi: 10.1093/nar/24.16.3134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  134. Rouse Dean T., Sheldon Candice C., Bagnall David J., Peacock W. James, Dennis Elizabeth S. FLC, a repressor of flowering, is regulated by genes in different inductive pathways. Plant J. 2002 Jan;29(2):183–191. doi: 10.1046/j.0960-7412.2001.01210.x. [DOI] [PubMed] [Google Scholar]
  135. Ruiz-García L., Madueño F., Wilkinson M., Haughn G., Salinas J., Martínez-Zapater J. M. Different roles of flowering-time genes in the activation of floral initiation genes in Arabidopsis. Plant Cell. 1997 Nov;9(11):1921–1934. doi: 10.1105/tpc.9.11.1921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. Samach A., Klenz J. E., Kohalmi S. E., Risseeuw E., Haughn G. W., Crosby W. L. The UNUSUAL FLORAL ORGANS gene of Arabidopsis thaliana is an F-box protein required for normal patterning and growth in the floral meristem. Plant J. 1999 Nov;20(4):433–445. doi: 10.1046/j.1365-313x.1999.00617.x. [DOI] [PubMed] [Google Scholar]
  137. Samach A., Onouchi H., Gold S. E., Ditta G. S., Schwarz-Sommer Z., Yanofsky M. F., Coupland G. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science. 2000 Jun 2;288(5471):1613–1616. doi: 10.1126/science.288.5471.1613. [DOI] [PubMed] [Google Scholar]
  138. Schultz E. A., Haughn G. W. LEAFY, a Homeotic Gene That Regulates Inflorescence Development in Arabidopsis. Plant Cell. 1991 Aug;3(8):771–781. doi: 10.1105/tpc.3.8.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  139. Shannon S., Meeks-Wagner D. R. A Mutation in the Arabidopsis TFL1 Gene Affects Inflorescence Meristem Development. Plant Cell. 1991 Sep;3(9):877–892. doi: 10.1105/tpc.3.9.877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  140. Sheldon C. C., Finnegan E. J., Rouse D. T., Tadege M., Bagnall D. J., Helliwell C. A., Peacock W. J., Dennis E. S. The control of flowering by vernalization. Curr Opin Plant Biol. 2000 Oct;3(5):418–422. doi: 10.1016/s1369-5266(00)00106-0. [DOI] [PubMed] [Google Scholar]
  141. Sheldon C. C., Rouse D. T., Finnegan E. J., Peacock W. J., Dennis E. S. The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3753–3758. doi: 10.1073/pnas.060023597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. Sheldon Candice C., Conn Anna B., Dennis Elizabeth S., Peacock W. James. Different regulatory regions are required for the vernalization-induced repression of FLOWERING LOCUS C and for the epigenetic maintenance of repression. Plant Cell. 2002 Oct;14(10):2527–2537. doi: 10.1105/tpc.004564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  143. Sieburth L. E., Meyerowitz E. M. Molecular dissection of the AGAMOUS control region shows that cis elements for spatial regulation are located intragenically. Plant Cell. 1997 Mar;9(3):355–365. doi: 10.1105/tpc.9.3.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  144. Sieburth L. E., Running M. P., Meyerowitz E. M. Genetic separation of third and fourth whorl functions of AGAMOUS. Plant Cell. 1995 Aug;7(8):1249–1258. doi: 10.1105/tpc.7.8.1249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  145. Simon R., Carpenter R., Doyle S., Coen E. Fimbriata controls flower development by mediating between meristem and organ identity genes. Cell. 1994 Jul 15;78(1):99–107. doi: 10.1016/0092-8674(94)90576-2. [DOI] [PubMed] [Google Scholar]
  146. Simon R., Igeño M. I., Coupland G. Activation of floral meristem identity genes in Arabidopsis. Nature. 1996 Nov 7;384(6604):59–62. doi: 10.1038/384059a0. [DOI] [PubMed] [Google Scholar]
  147. Simpson Gordon G., Dean Caroline. Arabidopsis, the Rosetta stone of flowering time? Science. 2002 Apr 12;296(5566):285–289. doi: 10.1126/science.296.5566.285. [DOI] [PubMed] [Google Scholar]
  148. Simpson Gordon G., Dijkwel Paul P., Quesada Victor, Henderson Ian, Dean Caroline. FY is an RNA 3' end-processing factor that interacts with FCA to control the Arabidopsis floral transition. Cell. 2003 Jun 13;113(6):777–787. doi: 10.1016/s0092-8674(03)00425-2. [DOI] [PubMed] [Google Scholar]
  149. Theissen G. Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol. 2001 Feb;4(1):75–85. doi: 10.1016/s1369-5266(00)00139-4. [DOI] [PubMed] [Google Scholar]
  150. Theissen G., Saedler H. Plant biology. Floral quartets. Nature. 2001 Jan 25;409(6819):469–471. doi: 10.1038/35054172. [DOI] [PubMed] [Google Scholar]
  151. Tilly J. J., Allen D. W., Jack T. The CArG boxes in the promoter of the Arabidopsis floral organ identity gene APETALA3 mediate diverse regulatory effects. Development. 1998 May;125(9):1647–1657. doi: 10.1242/dev.125.9.1647. [DOI] [PubMed] [Google Scholar]
  152. Tröbner W., Ramirez L., Motte P., Hue I., Huijser P., Lönnig W. E., Saedler H., Sommer H., Schwarz-Sommer Z. GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis. EMBO J. 1992 Dec;11(13):4693–4704. doi: 10.1002/j.1460-2075.1992.tb05574.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  153. Vandenbussche Michiel, Zethof Jan, Souer Erik, Koes Ronald, Tornielli Giovanni B., Pezzotti Mario, Ferrario Silvia, Angenent Gerco C., Gerats Tom. Toward the analysis of the petunia MADS box gene family by reverse and forward transposon insertion mutagenesis approaches: B, C, and D floral organ identity functions require SEPALLATA-like MADS box genes in petunia. Plant Cell. 2003 Oct 23;15(11):2680–2693. doi: 10.1105/tpc.017376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  154. Wagner D., Sablowski R. W., Meyerowitz E. M. Transcriptional activation of APETALA1 by LEAFY. Science. 1999 Jul 23;285(5427):582–584. doi: 10.1126/science.285.5427.582. [DOI] [PubMed] [Google Scholar]
  155. Wang Xiping, Feng Suhua, Nakayama Naomi, Crosby W. L., Irish Vivian, Deng Xing Wang, Wei Ning. The COP9 signalosome interacts with SCF UFO and participates in Arabidopsis flower development. Plant Cell. 2003 May;15(5):1071–1082. doi: 10.1105/tpc.009936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  156. Weigel D., Alvarez J., Smyth D. R., Yanofsky M. F., Meyerowitz E. M. LEAFY controls floral meristem identity in Arabidopsis. Cell. 1992 May 29;69(5):843–859. doi: 10.1016/0092-8674(92)90295-n. [DOI] [PubMed] [Google Scholar]
  157. Weigel D., Meyerowitz E. M. Activation of floral homeotic genes in Arabidopsis. Science. 1993 Sep 24;261(5129):1723–1726. doi: 10.1126/science.261.5129.1723. [DOI] [PubMed] [Google Scholar]
  158. Weigel D., Meyerowitz E. M. The ABCs of floral homeotic genes. Cell. 1994 Jul 29;78(2):203–209. doi: 10.1016/0092-8674(94)90291-7. [DOI] [PubMed] [Google Scholar]
  159. Weigel D., Nilsson O. A developmental switch sufficient for flower initiation in diverse plants. Nature. 1995 Oct 12;377(6549):495–500. doi: 10.1038/377495a0. [DOI] [PubMed] [Google Scholar]
  160. Western Tamara L., Cheng Yulan, Liu Jun, Chen Xuemei. HUA ENHANCER2, a putative DExH-box RNA helicase, maintains homeotic B and C gene expression in Arabidopsis. Development. 2002 Apr;129(7):1569–1581. doi: 10.1242/dev.129.7.1569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  161. Wilkinson M. D., Haughn G. W. UNUSUAL FLORAL ORGANS Controls Meristem Identity and Organ Primordia Fate in Arabidopsis. Plant Cell. 1995 Sep;7(9):1485–1499. doi: 10.1105/tpc.7.9.1485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  162. Wilson R. N., Heckman J. W., Somerville C. R. Gibberellin Is Required for Flowering in Arabidopsis thaliana under Short Days. Plant Physiol. 1992 Sep;100(1):403–408. doi: 10.1104/pp.100.1.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  163. Yang Yingzhen, Fanning Laura, Jack Thomas. The K domain mediates heterodimerization of the Arabidopsis floral organ identity proteins, APETALA3 and PISTILLATA. Plant J. 2003 Jan;33(1):47–59. doi: 10.1046/j.0960-7412.2003.01473.x. [DOI] [PubMed] [Google Scholar]
  164. Yang Yingzhen, Xiang Hongjun, Jack Thomas. pistillata-5, an Arabidopsis B class mutant with strong defects in petal but not in stamen development. Plant J. 2003 Jan;33(1):177–188. doi: 10.1046/j.1365-313x.2003.01603.x. [DOI] [PubMed] [Google Scholar]
  165. Yanofsky M. F., Ma H., Bowman J. L., Drews G. N., Feldmann K. A., Meyerowitz E. M. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature. 1990 Jul 5;346(6279):35–39. doi: 10.1038/346035a0. [DOI] [PubMed] [Google Scholar]
  166. Yu Hao, Xu Yifeng, Tan Ee Ling, Kumar Prakash P. AGAMOUS-LIKE 24, a dosage-dependent mediator of the flowering signals. Proc Natl Acad Sci U S A. 2002 Nov 25;99(25):16336–16341. doi: 10.1073/pnas.212624599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  167. Zik Moriyah, Irish Vivian F. Global identification of target genes regulated by APETALA3 and PISTILLATA floral homeotic gene action. Plant Cell. 2003 Jan;15(1):207–222. doi: 10.1105/tpc.006353. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES