Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1983 Nov;42(2):763–770. doi: 10.1128/iai.42.2.763-770.1983

Insoluble glucan synthesis by Streptococcus mutans serotype c strains.

H K Kuramitsu, L Wondrack
PMCID: PMC264495  PMID: 6227560

Abstract

Both dextransucrase and mutansynthetase activities have been purified from the culture fluids of Streptococcus mutans GS-5 (serotype c). Although homogeneous dextransucrase preparations normally synthesize little insoluble glucan, essentially all of the glucan synthesized by this enzyme in the presence of 1.5 M (NH4)2SO4 was water insoluble. Linkage analysis of the insoluble glucans indicated that the presence of NH4+ increased the portion of alpha-1,3-glucose linkages relative to alpha-1,6-glucose units in the product. Chromatofocusing of aggregated glucosyltransferase fractions synthesizing predominantly insoluble glucan yielded primarily dextransucrase activity separable from relatively low levels of mutansynthetase activity. The latter enzyme was detected only in 18-h assays and synthesized primer-dependent insoluble glucan, which was decreased in the presence of NH4+. In the absence of primer dextran T10, the addition of dextransucrase also stimulated insoluble glucan synthesis by mutansynthetase. Dextransucrase and mutansynthetase appear to be distinct enzymes, since the latter possesses a higher molecular weight (155,000 compared to 140,000), a much lower isoelectric point, and did not cross-react with antibody directed against dextransucrase. These results are discussed relative to the mechanism of insoluble glucan synthesis by S. mutans serotype c strains.

Full text

PDF
769

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Fukui K., Fukui Y., Moriyama T. Purification and properties of dextransucrase and invertase from Streptococcus mutans. J Bacteriol. 1974 Jun;118(3):796–804. doi: 10.1128/jb.118.3.796-804.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Fukushima K., Motoda R., Takada K., Ikeda T. Resolution of Streptococcus mutans glycosyltransferases into two components essential to water-insoluble glucan synthesis. FEBS Lett. 1981 Jun 15;128(2):213–216. doi: 10.1016/0014-5793(81)80083-x. [DOI] [PubMed] [Google Scholar]
  3. Hamada S., Slade H. D. Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol Rev. 1980 Jun;44(2):331–384. doi: 10.1128/mr.44.2.331-384.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hamada S., Torii M. Interaction of glucosyltransferase from Streptococcus mutans with various glucans. J Gen Microbiol. 1980 Jan;116(1):51–59. doi: 10.1099/00221287-116-1-51. [DOI] [PubMed] [Google Scholar]
  5. Janda W. M., Kuramitsu H. K. Properties of a variant of Streptococcus mutans altered in its ability to interact with glucans. Infect Immun. 1977 May;16(2):575–586. doi: 10.1128/iai.16.2.575-586.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Janda W. M., Kuramitsu H. K. Regulation and extracellular glucosyltransferase production and the relationship between extracellular and cell-associated activities in Streptococcus mutans. Infect Immun. 1976 Jul;14(1):191–202. doi: 10.1128/iai.14.1.191-202.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kuramitsu H. K. Characterization of extracellular glucosyltransferase activity of Steptococcus mutans. Infect Immun. 1975 Oct;12(4):738–749. doi: 10.1128/iai.12.4.738-749.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kuramitsu H. K., Ingersoll L. Antigenic relationships between the glucosyltransferase activities of Streptococcus mutans subspecies mutans. Arch Oral Biol. 1978;23(8):691–696. doi: 10.1016/0003-9969(78)90195-4. [DOI] [PubMed] [Google Scholar]
  9. Montville T. J., Cooney C. L., Sinskey A. J. Streptococcus mutans dextransucrase: a review. Adv Appl Microbiol. 1978;24:55–84. doi: 10.1016/s0065-2164(08)70636-1. [DOI] [PubMed] [Google Scholar]
  10. Mukasa H., Shimamura A., Tsumori H. Effect of salts on water-insoluble glucan formation by glucosyltransferase of Streptococcus mutans. Infect Immun. 1979 Mar;23(3):564–570. doi: 10.1128/iai.23.3.564-570.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mukasa H., Shimamura A., Tsumori H. Purification and characterization of basic glucosyltransferase from Streptococcus mutans serotype c. Biochim Biophys Acta. 1982 Oct 28;719(1):81–89. doi: 10.1016/0304-4165(82)90310-5. [DOI] [PubMed] [Google Scholar]
  12. Newman B. M., White P., Mohan S. B., Cole J. A. Effect of dextran and ammonium sulphate on the reaction catalysed by a glucosyltransferase complex from Streptococcus mutans. J Gen Microbiol. 1980 Jun;118(2):353–366. doi: 10.1099/00221287-118-2-353. [DOI] [PubMed] [Google Scholar]
  13. Nisizawa T., Imai S., Akada H., Hinoide M., Araya S. Extracellular glucans produced by oral streptococci. Arch Oral Biol. 1976;21(3):207–213. doi: 10.1016/0003-9969(76)90131-x. [DOI] [PubMed] [Google Scholar]
  14. Shimamura A., Tsumori H., Mukasa H. Purification and properties of Streptococcus mutans extracellular glucosyltransferase. Biochim Biophys Acta. 1982 Mar 18;702(1):72–80. doi: 10.1016/0167-4838(82)90028-0. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES