Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1983 Aug;41(2):507–515. doi: 10.1128/iai.41.2.507-515.1983

Neuraminidase production by a Streptococcus sanguis strain associated with subacute bacterial endocarditis.

D C Straus, C Portnoy-Duran
PMCID: PMC264670  PMID: 6874067

Abstract

The properties of an extracellular neuraminidase produced by a Streptococcus sanguis strain (isolated from a confirmed case of subacute bacterial endocarditis) during growth in a defined medium was examined in this investigation. This enzyme, isolated from concentrated culture supernatants of S. sanguis biotype II, was active against human alpha-1 acid glycoprotein, N-acetylneuramin lactose, bovine submaxillary mucin, and fetuin. Neuraminidase production paralleled bacterial growth in defined medium and was maximal in the early stationary phase of growth but decreased dramatically, probably owing to protease production, during the late stationary phase. The enzyme was purified to near homogeneity by a combination of salt fractionation, ion-exchanged chromatography on DEAE-Sephacel, and gel filtration on Sephadex G-200. These procedures yielded an enzyme preparation that possessed a specific activity of 174.4 mumol of sialic acid released per min per mg of protein against human alpha-1 acid glycoprotein. The Km value for this enzyme with human alpha-1 acid glycoprotein as substrate was 2.5 X 10(-3) M, and the enzyme possessed a pH optimum of 6.5. The S. sanguis neuraminidase had a molecular weight of approximately 85,000 as estimated by gel filtration and approximately 90,000 when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme was stable at temperatures of 4 and 37 degrees C for 3 h, but approximately 50% of the enzymatic activity was lost within 30 min at 50 degrees C, with 100% of the enzymatic activity being destroyed within 10 min at temperatures of greater than or equal to 65 degrees C.

Full text

PDF
513

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMINOFF D. Methods for the quantitative estimation of N-acetylneuraminic acid and their application to hydrolysates of sialomucoids. Biochem J. 1961 Nov;81:384–392. doi: 10.1042/bj0810384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aminoff D., Bruegge W. F., Bell W. C., Sarpolis K., Williams R. Role of sialic acid in survival of erythrocytes in the circulation: interaction of neuraminidase-treated and untreated erythrocytes with spleen and liver at the cellular level. Proc Natl Acad Sci U S A. 1977 Apr;74(4):1521–1524. doi: 10.1073/pnas.74.4.1521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BRUNETTI P., JOURDIAN G. W., ROSEMAN S. The sialic acids. III. Distribution and properties of animal N-acetylneuraminic aldolase. J Biol Chem. 1962 Aug;237:2447–2453. [PubMed] [Google Scholar]
  4. Balke E., Drzeniek R. Untersuchungen über die Clostridium perfringens-Neuraminidase. Z Naturforsch B. 1969 May;24(5):599–603. [PubMed] [Google Scholar]
  5. Cassidy J. T., Jourdian G. W., Roseman S. The sialic acids. VI. Purification and properties of sialidase from Clostridium perfringens. J Biol Chem. 1965 Sep;240(9):3501–3506. [PubMed] [Google Scholar]
  6. Davis L., Baig M. M., Ayoub E. M. Properties of extracellular neuraminidase produced by group A streptococcus. Infect Immun. 1979 Jun;24(3):780–786. doi: 10.1128/iai.24.3.780-786.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Drzeniek R. Viral and bacterial neuraminidases. Curr Top Microbiol Immunol. 1972;59:35–74. doi: 10.1007/978-3-642-65444-2_2. [DOI] [PubMed] [Google Scholar]
  8. Facklam R. R. Physiological differentiation of viridans streptococci. J Clin Microbiol. 1977 Feb;5(2):184–201. doi: 10.1128/jcm.5.2.184-201.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Flashner M., Wang P., Hurley J. B., Tanenbaum S. W. Properties of an inducible extracellular neuraminidase from an Arthrobacter isolate. J Bacteriol. 1977 Mar;129(3):1457–1465. doi: 10.1128/jb.129.3.1457-1465.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Glasgow L. R., Paulson J. C., Hill R. L. Systematic purification of five glycosidases from Streptococcus (Diplococcus) pneumoniae. J Biol Chem. 1977 Dec 10;252(23):8615–8623. [PubMed] [Google Scholar]
  11. Hayano S., Tanaka A., Okuyama Y. Distribution and serological specificity of sialidase produced by various groups of streptococci. J Bacteriol. 1969 Oct;100(1):354–357. doi: 10.1128/jb.100.1.354-357.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hayano S., Tanaka A. Sialidase-like enzymes produced by group A, B, C, G, and L streptococci and by Streptococcus sanguis. J Bacteriol. 1969 Mar;97(3):1328–1333. doi: 10.1128/jb.97.3.1328-1333.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hayano S., Tanaka A. Streptococcal sialidase. I. Isolation and properties of sialidase produced by group K Streptococcus. J Bacteriol. 1967 Jun;93(6):1753–1757. doi: 10.1128/jb.93.6.1753-1757.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Isacson P. Myxoviruses and autoimmunity. Prog Allergy. 1967;10:256–292. [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. Labib R. S., Calvanico N. J., Tomasi T. B., Jr Studies on extracellular proteases of Streptococcus sanguis. Purification and characterization of a human IgA1 specific protease. Biochim Biophys Acta. 1978 Oct 12;526(2):547–559. doi: 10.1016/0005-2744(78)90145-6. [DOI] [PubMed] [Google Scholar]
  17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Milligan T. W., Mattingly S. J., Straus D. C. Purification and partial characterization of neuraminidase from type III group B streptococci. J Bacteriol. 1980 Oct;144(1):164–171. doi: 10.1128/jb.144.1.164-171.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Milligan T. W., Straus D. C., Mattingly S. J. Extracellular neuraminidase production by group B streptococci. Infect Immun. 1977 Oct;18(1):189–195. doi: 10.1128/iai.18.1.189-195.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Morell A. G., Gregoriadis G., Scheinberg I. H., Hickman J., Ashwell G. The role of sialic acid in determining the survival of glycoproteins in the circulation. J Biol Chem. 1971 Mar 10;246(5):1461–1467. [PubMed] [Google Scholar]
  21. Moriyama T., Barksdale L. Neuraminidase of Corynebacterium diphtheriae. J Bacteriol. 1967 Nov;94(5):1565–1581. doi: 10.1128/jb.94.5.1565-1581.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Müller H. E. Die Neuraminidase als pathogenetischer Faktor bei Gasödem-Infektionen durch Clostridium perfringens. Dtsch Med Wochenschr. 1970 Mar 6;95(10):513–517. doi: 10.1055/s-0028-1108495. [DOI] [PubMed] [Google Scholar]
  23. Müller H. E. Die Neuraminidase als pathogenetischer Faktor bei Pneumokokken-Infektionen. Dtsch Med Wochenschr. 1969 Oct 17;94(42):2149–passim. doi: 10.1055/s-0028-1110406. [DOI] [PubMed] [Google Scholar]
  24. Müller H. E. Neuraminidase activity in Streptococcus sanguis and in the viridans group, and occurrence of acylneuraminate lyase in viridans organisms isolated from patients with septicemia. Infect Immun. 1974 Feb;9(2):323–328. doi: 10.1128/iai.9.2.323-328.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Müller H. E. Neuraminidase and Neuraminatlyase bei Streptococcus sanguis. Zentralbl Bakteriol Orig A. 1972 Aug;221(3):303–308. [PubMed] [Google Scholar]
  26. Müller H. E., Werner H. Die Neuraminidase als pathogenetischer Faktor bei einem durch Bacteroides fragilis bedingten Abscess. Z Med Mikrobiol Immunol. 1970;156(1):98–106. [PubMed] [Google Scholar]
  27. Pinter J. K., Hayashi J. A., Bahn A. N. Extracellular streptococcal neuraminidase. J Bacteriol. 1968 Apr;95(4):1491–1492. doi: 10.1128/jb.95.4.1491-1492.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Straus D. C., Mattingly S. J., Milligan T. W. Production of extracellular material by streptococci associated with subacute bacterial endocarditis. Infect Immun. 1977 Jul;17(1):148–156. doi: 10.1128/iai.17.1.148-156.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Straus D. C. Protease production by Streptococcus sanguis associated with subacute bacterial endocarditis. Infect Immun. 1982 Dec;38(3):1037–1045. doi: 10.1128/iai.38.3.1037-1045.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Terleckyj B., Willett N. P., Shockman G. D. Growth of several cariogenic strains of oral streptococci in a chemically defined medium. Infect Immun. 1975 Apr;11(4):649–655. doi: 10.1128/iai.11.4.649-655.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
  32. Woodruff J. J., Gesner B. M. The effect of neuraminidase on the fate of transfused lymphocytes. J Exp Med. 1969 Mar 1;129(3):551–567. doi: 10.1084/jem.129.3.551. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES