Skip to main content
Journal of Biological Physics logoLink to Journal of Biological Physics
. 2006 Mar 29;32(2):73–95. doi: 10.1007/s10867-005-9002-8

Do Femtonewton Forces Affect Genetic Function? A Review

Seth Blumberg 1,, Matthew W Pennington 1, Jens-Christian Meiners 1
PMCID: PMC2647000  PMID: 19669453

Abstract

Protein-Mediated DNA looping is intricately related to gene expression. Therefore any mechanical constraint that disrupts loop formation can play a significant role in gene regulation. Polymer physics models predict that less than a piconewton of force may be sufficient to prevent the formation of DNA loops. Thus, it appears that tension can act as a molecular switch that controls the much larger forces associated with the processive motion of RNA polymerase. Since RNAP can exert forces over 20 pN before it stalls, a ‘substrate tension switch’ could offer a force advantage of two orders of magnitude. Evidence for such a mechanism is seen in recent in vitro micromanipulation experiments. In this article we provide new perspective on existing theory and experimental data on DNA looping in vitro and in vivo. We elaborate on the connection between tension and a variety of other intracellular mechanical constraints including sequence specific curvature and supercoiling. In the process, we emphasize that the richness and versatility of DNA mechanics opens up a whole new paradigm of gene regulation to explore.

Keywords: DNA, Mechanics, Looping, Tension

Abbreviations:

WLC

Wormlike Chain

SM

Sankararaman and Marko Model

BTM

Blumberg, Tkachenko and Meiners Model

SY

Shimada and Yamakawa Model

Contributor Information

Seth Blumberg, Email: sblumber@umich.edu.

Matthew W. Pennington, Email: mpenning@umich.edu

Jens-Christian Meiners, Email: meiners@umich.edu.

References

  • 1.Duncan, R.L. and C.H. Turner.: Mechanotransduction and the Functional-Response of Bone to Mechanical Strain. Calcified Tissue International57 (1995), 344–358. [DOI] [PubMed]
  • 2.Liu, M.Y., A.K. Tanswell and M. Post.: Mechanical force-induced signal transduction in lung cells. Am. J. Physiol.-Lung Cell. Mol. Physiol. 277 (1999), L667–L683. [DOI] [PubMed]
  • 3.Ingber, D.E.: Tensegrity: The architectural basis of cellular mechanotransduction. Annu. Rev. Physiol. 59 (1997), 575–599. [DOI] [PubMed]
  • 4.Ingber, D.E.: Mechanobiology and diseases of mechanotransduction. Annals of Medicine35 (2003), 564–577. [DOI] [PubMed]
  • 5.Ingber, D.E.: Mechanical signalling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circulation Research91 (2002), 877–887. [DOI] [PubMed]
  • 6.Knoll, R., M. Hoshijima and K. Chien.: Cardiac mechanotransduction and implications for heart disease. Journal of Molecular Medicine-Jmm81 (2003), 750–756. [DOI] [PubMed]
  • 7.Paszek, M.J. and V.M. Weaver.: The tension mounts: Mechanics meets morphogenesis and malignancy. Journal of Mammary Gland Biology and Neoplasia9 (2004), 325–342. [DOI] [PubMed]
  • 8.Martinac, B.: Mechanosensitive ion channels: molecules of mechanotransduction. Journal of Cell Science117 (2004), 2449–2460. [DOI] [PubMed]
  • 9.Maniotis, A.J., C.S. Chen and D.E. Ingber.: Demonstration of mechanical connections between integrins cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc. Natl. Acad. Sci. U.S.A.94 (1997), 849–854. [DOI] [PMC free article] [PubMed]
  • 10.Bensimon, D.: Force: a new structural control parameter? Structure4 (1996), 885–889. [DOI] [PubMed]
  • 11.Cocco, S., J.F. Marko and R. Monasson.: Theoretical models for single-molecule DNA and RNA experiments: From elasticity to unzipping. Comptes Rendus Physique3 (2002), 569–584. [DOI]
  • 12.Wang, M.D., M.J. Schnitzer, H. Yin, R. Landick, J. Gelles and S.M. Block.: Force and velocity measured for single molecules of RNA polymerase. Science282 (1998), 902–907. [DOI] [PubMed]
  • 13.Brower-Toland, B.D., C.L. Smith, R.C. Yeh, J.T. Lis, C.L. Peterson and M.D. Wang.: Mechanical disruption of individual nucleosomes reveals a reversible multistage release of DNA. Proc. Natl. Acad. Sci. U.S.A.99 (2002), 1960–1965. [DOI] [PMC free article] [PubMed]
  • 14.Bustamante, C., Y.R. Chemla, N.R. Forde and D. Izhaky.: Mechanical processes in biochemistry. Annual Review of Biochemistry73 (2004), 705–748. [DOI] [PubMed]
  • 15.Bustamante, C., J.F. Marko, E.D. Siggia and S. Smith.: Entropic elasticity of lambda-phage DNA. Science265 (1994), 1599–1600. [DOI] [PubMed]
  • 16.Schleif, R.: DNA Looping. Annual Review of Biochemistry61 (1992), 199–223. [DOI] [PubMed]
  • 17.Ptashne, M. and A. Gann.: Genes and Signals. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press. 192 (2002).
  • 18.Droge, P. and B. Muller-Hill.: High local protein concentrations at promoters: strategies in prokaryotic and eukaryotic cells. Bioessays23 (2001), 179–183. [DOI] [PubMed]
  • 19.Marko, J.F. and E.D. Siggia.: Stretching DNA. Macromolecules28 (1995), 8759–8770. [DOI]
  • 20.Smith, S.B., L. Finzi and C. Bustamante.: Direct Mechanical Measurements of the Elasticity of Single DNA-Molecules by Using Magnetic Beads. Science258 (1992), 1122–1126. [DOI] [PubMed]
  • 21.Meiners, J.C. and S.R. Quake.: Femtonewton force spectroscopy of single extended DNA molecules. Physical Review Letters84 (2000), 5014–5017. [DOI] [PubMed]
  • 22.Marko, J.F. and E.D. Siggia.: Driving proteins off DNA using applied tension. Biophysical Journal73 (1997), 2173–2178. [DOI] [PMC free article] [PubMed]
  • 23.Sankararaman, S. and J.F. Marko.: Formation of loops in DNA under tension. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics)71 (2005), 021911. [DOI] [PubMed]
  • 24.Blumberg, S., A.V. Tkachenko and J.-C. Meiners.: Disruption of Protein-Mediated DNA Looping by Tension in the Substrate DNA. Biophys. J.88 (2005), 1692–1701. [DOI] [PMC free article] [PubMed]
  • 25.Kratky, O. and G. Porod.: Rontgenuntersuchung Geloster Fadenmolekule. Recueil Des Travaux Chimiques Des Pays-Bas-Journal of the Royal Netherlands Chemical Society68 (1949), 1106–1122.
  • 26.Yamakawa, H. and W.H. Stockmayer.: Statistical Mechanics of Wormlike Chains. II. Excluded Volume Effects. The Journal of Chemical Physics57 (1972), 2843–2854. [DOI]
  • 27.Cloutier, T.E. and J. Widom. Spontaneous sharp bending of double-stranded DNA. Molecular Cell14 (2004), 355–362. [DOI] [PubMed]
  • 28.Yan, J., R. Kawamura and J.F. Marko.: Statistics of loop formation along double helix DNAs. Physical Review E (2005), 71. [DOI] [PubMed]
  • 29.Rudnick, J. and R. Bruinsma.: DNA-protein cooperative binding through variable-range elastic coupling. Biophysical Journal76 (1999), 1725–1733. [DOI] [PMC free article] [PubMed]
  • 30.Oehler, S., E.R. Eismann, H. Kramer and B. Mullerhill.: The 3 Operators of the Lac Operon Cooperate in Repression. Embo J.9 (1990), 973–979. [DOI] [PMC free article] [PubMed]
  • 31.Goyal, S. Personal Communication. (2005).
  • 32.Buchler, N. E., U. Gerland and T. Hwa.: On schemes of combinatorial transcription logic. Proc. Natl. Acad. Sci. U.S.A.100 (2003), 5136–5141. [DOI] [PMC free article] [PubMed]
  • 33.Zeller, R.W., J.D. Griffith, J.G. Moore, C.V. Kirchhamer, R.J. Britten and E.H. Davidson.: A Multimerizing Transcription Factor of Sea-Urchin Embryos Capable of Looping DNA. Proceedings of the National Academy of Sciences of the United States of America92 (1995), 2989–2993. [DOI] [PMC free article] [PubMed]
  • 34.Bustamante, C., Z. Bryant and S.B. Smith.: Ten years of tension: single-molecule DNA mechanics. Nature421 (2003), 423–427. [DOI] [PubMed]
  • 35.Finzi, L. and J. Gelles.: Measurement of Lactose Repressor-Mediated Loop Formation and Breakdown in Single DNA-Molecules. Science267 (1995), 378–380. [DOI] [PubMed]
  • 36.Strick, T., J. Allemand, V. Croquette and D. Bensimon.: Twisting and stretching single DNA molecules. Prog Biophys Mol Biol74 (2000), 115–140. [DOI] [PubMed]
  • 37.Nambiar, R., A. Gajraj and J.C. Meiners.: All-optical constant-force laser tweezers. Biophysical Journal87 (2004), 1972–1980. [DOI] [PMC free article] [PubMed]
  • 38.Lang, M.J., C.L. Asbury, J.W. Shaevitz and S.M. Block.: An automated two-dimensional optical force clamp for single molecule studies. Biophysical Journal83 (2002), 491–501. [DOI] [PMC free article] [PubMed]
  • 39.Yan, J., D. Skoko and J.F. Marko.: Near-field-magnetic-tweezer manipulation of single DNA molecules. Physical Review E (2004), 70. [DOI] [PubMed]
  • 40.Lia, G., D. Bensimon, V. Croquette, J.F. Allemand, D. Dunlap, D.E.A. Lewis, S.C. Adhya and L. Finzi.: Supercoiling and denaturation in Gal repressor/heat unstable nucleoid protein (HU)-mediated DNA looping. Proc. Natl. Acad. Sci. U.S.A.100 (2003), 11373–11377. [DOI] [PMC free article] [PubMed]
  • 41.Virnik, K., Y.L. Lyubchenko, M.A. Karymov, P. Dahlgren, M.Y. Tolstorukov, S. Semsey, V.B. Zhurkin and S. Adhya.: “Antiparallel” DNA Loop in Gal Repressosome Visualized by Atomic Force Microscopy. J. Mol. Biol.334 (2003), 53–63. [DOI] [PubMed]
  • 42.Schafer, D.A., J. Gelles, M.P. Sheetz and R. Landick.: Transcription by Single Molecules of Rna-Polymerase Observed by Light-Microscopy. Nature352 (1991), 444–448. [DOI] [PubMed]
  • 43.Yin, H., M.D. Wang, K. Svoboda, R. Landick, S.M. Block and J. Gelles.: Transcription against an Applied Force. Science270 (1995), 1653–1657. [DOI] [PubMed]
  • 44.Strick, T.R., J.F. Allemand, D. Bensimon, A. Bensimon and V. Croquette.: The elasticity of a single supercoiled DNA molecule. Science271 (1996), 1835–1837. [DOI] [PubMed]
  • 45.Poirier, M., S. Eroglu, D. Chatenay and J.F. Marko.: Reversible and irreversible unfolding of mitotic newt chromosomes by applied force. Molecular Biology of the Cell11 (2000), 269–276. [DOI] [PMC free article] [PubMed]
  • 46.Ringrose, L., S. Chabanis, P.O. Angrand, C. Woodroofe and A.F. Stewart.: Quantitative comparison of DNA looping in vitro and in vivo: chromatin increases effective DNA flexibility at short distances. Embo J.18 (1999), 6630–6641. [DOI] [PMC free article] [PubMed]
  • 47.Rippe, K., P.H. Vonhippel and J. Langowski.: Action at a Distance – DNA-Looping and Initiation of Transcription. Trends in Biochemical Sciences20 (1995), 500–506. [DOI] [PubMed]
  • 48.Leger, J.F., J. Robert, L. Bourdieu, D. Chatenay and J.F. Marko.: RecA binding to a single double-stranded DNA molecule: A possible role of DNA conformational fluctuations. Proceedings of the National Academy of Sciences of the United States of America95 (1998), 12295–12299. [DOI] [PMC free article] [PubMed]
  • 49.Marko, J.F. and M.G. Poirier.: Micromechanics of chromatin and chromosomes. Biochemistry and Cell Biology-Biochimie Et Biologie Cellulaire81 (2003), 209–220. [DOI] [PubMed]
  • 50.Cluzel, P., A. Lebrun, C. Heller, R. Lavery, J.L. Viovy, D. Chatenay and F. Caron.: DNA: An extensible molecule. Science271 (1996), 792–794. [DOI] [PubMed]
  • 51.Smith, S.B., Y.J. Cui and C. Bustamante.: Overstretching B-DNA: The elastic response of individual double-stranded and single-stranded DNA molecules. Science271 (1996), 795–799. [DOI] [PubMed]
  • 52.Thanbichler, M., P.H. Viollier and L. Shapiro.: The structure and function of the bacterial chromosome. Current Opinion in Genetics & Development15 (2005), 153–162. [DOI] [PubMed]
  • 53.Misteli, T.: Concepts in nuclear architecture. Bioessays27 (2005), 477–487. [DOI] [PubMed]
  • 54.Dworkin, J. and R. Losick.: Does RNA polymerase help drive chromosome segregation in bacteria? Proc. Natl. Acad. Sci. U.S.A.99 (2002), 14089–14094. [DOI] [PMC free article] [PubMed]
  • 55.Poirier, M.G. and J.F. Marko.: Mitotic chromosomes are chromatin networks without a mechanically contiguous protein scaffold. Proceedings of the National Academy of Sciences of the United States of America99 (2002), 15393–15397. [DOI] [PMC free article] [PubMed]
  • 56.Pederson, T.: Half a century of “the nuclear matrix”. Molecular Biology of the Cell11 (2000), 799–805. [DOI] [PMC free article] [PubMed]
  • 57.Hancock, R.: Internal organisation of the nucleus: assembly of compartments by macromolecular crowding and the nuclear matrix model. Biology of the Cell96 (2004), 595–601. [DOI] [PubMed]
  • 58.Shimada, J. and H. Yamakawa.: Ring-Closure Probabilities for Twisted Wormlike Chains –Application to DNA. Macromolecules17 (1984), 689–698. [DOI]
  • 59.Shore, D., J. Langowski and R.L. Baldwin.: DNA Flexibility Studied by Covalent Closure of Short Fragments into Circles. Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences78 (1981), 4833–4837. [DOI] [PMC free article] [PubMed]
  • 60.Popov, Y.O. and A.V. Tkachenko.: Effects of kinks on DNA elasticity. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics)71 (2005), 051905–051908. [DOI] [PubMed]
  • 61.Wiggins, P. A., R. Phillips and P.C. Nelson.: Exact theory of kinkable elastic polymers. Physical Review E71 (2005), 021909. [DOI] [PMC free article] [PubMed]
  • 62.Yan, J. and J.F. Marko. Localized single-stranded bubble mechanism for cyclization of short double helix DNA. Physical Review Letters93 (2004), 108108. [DOI] [PubMed]
  • 63.Dunn, T. M., S. Hahn, S. Ogden and R.F. Schleif.: An Operator at -280 Base-Pairs That Is Required for Repression of Arabad Operon Promoter – Addition of DNA Helical Turns between the Operator and Promoter Cyclically Hinders Repression. Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences81 (1984), 5017–5020. [DOI] [PMC free article] [PubMed]
  • 64.Muller, J., S. Oehler and B. Muller-Hill.: Repression of lac Promoter as a Function of Distance, Phase and Quality of an Auxiliary lac Operator. J. Mol. Biol.257 (1996), 21–29. [DOI] [PubMed]
  • 65.Urnov, F.D. and A.P. Wolffe.: Above and within the genome: Epigenetics past and present. Journal of Mammary Gland Biology and Neoplasia6 (2001), 153–167. [DOI] [PubMed]
  • 66.Ogata, K., K. Sato and T. Tahirov.: Eukaryotic transcriptional regulatory complexes: cooperativity from near and afar. Curr. Opin. Struct. Biol.13 (2003), 40–48. [DOI] [PubMed]
  • 67.Vilar, J.M.G. and S. Leibler.: DNA looping and physical constraints on transcription regulation. Journal of Molecular Biology331 (2003), 981–989. [DOI] [PubMed]
  • 68.Balaeff, A., L. Mahadevan and K. Schulten. Structural Basis for Cooperative DNA Binding by CAP and Lac Repressor. Structure12 (2004), 123–132. [DOI] [PubMed]
  • 69.Kulic, I.M. and H. Schiessel.: DNA spools under tension. Physical Review Letters92 (2004), 228101. [DOI] [PubMed]
  • 70.Levchenko, V., B. Jackson and V. Jackson.: Histone release during transcription: displacement of the two H2A-H2B dimers in the nucleosome is dependent on different levels of transcription-induced positive stress. Biochemistry44 (2005), 5357–5372. [DOI] [PubMed]
  • 71.Hizume, K., S.H. Yoshimura and K. Takeyasu.: Atomic force microscopy demonstrates a critical role of DNA superhelicity in nucleosome dynamics. Cell Biochemistry and Biophysics40 (2004), 249–261. [DOI] [PubMed]
  • 72.Jackson, S., W. Brooks and V. Jackson.: Dynamics of the Interactions of Histones H2a,H2b and H3,H4 with Torsionally Stressed DNA. Biochemistry33 (1994), 5392–5403. [DOI] [PubMed]
  • 73.Mehta, R.A. and J.D. Kahn.: Designed hyperstable lac repressor center dot DNA loop topologies suggest alternative loop geometries. J. Mol. Biol.294 (1999), 67–77. [DOI] [PubMed]
  • 74.Watson, M.A., D.M. Gowers and S.E. Halford.: Alternative geometries of DNA looping: an analysis using the SfiI endonuclease. J. Mol. Biol.298 (2000), 461–475. [DOI] [PubMed]
  • 75.Zhang, Y.L. and D.M. Crothers.: Statistical mechanics of sequence-dependent circular DNA and its application for DNA cyclization. Biophysical Journal84 (2003), 136–153. [DOI] [PMC free article] [PubMed]
  • 76.Merlitz, H., K. Rippe, K.V. Klenin and J. Langowski.: Looping Dynamics of Linear DNA Molecules and the Effect of DNA Curvature: A Study by Brownian Dynamics Simulation. Biophys. J.74 (1998), 773–779. [DOI] [PMC free article] [PubMed]
  • 77.Kessler, D.A. and Y. Rabin.: Effect of curvature and twist on the conformations of a fluctuating ribbon. J. Chem. Phys.118 (2003), 897–904. [DOI]
  • 78.Goyal, S., N.C. Perkins and C.L. Lee. Nonlinear dynamics and loop formation in Kirchhoff rods with implications to the mechanics of DNA and cables. Journal of Computational Physics209 (2005), 371–389.
  • 79.Marko, J.F. and E.D. Siggia.: Fluctuations and Supercoiling of DNA. Science. 265 (1994), 506–508. [DOI] [PubMed]
  • 80.Jian, H., T. Schlick and A. Vologodskii.: Internal Motion of Supercoiled DNA: Brownian Dynamics Simulations of Site Juxtaposition. J. Mol. Biol.284 (1998), 287–296. [DOI] [PubMed]
  • 81.Huang, J., T. Schlick and A. Vologodskii.: Dynamics of site juxtaposition in supercoiled DNA. Proceedings of the National Academy of Sciences of the United States of America.98 (2001), 968–973. [DOI] [PMC free article] [PubMed]
  • 82.Stanford, N.P., M.D. Szczelkun, J.F. Marko and S.E. Halford.: One- and three-dimensional pathways for proteins to reach specific DNA sites. Embo J.19 (2000), 6546–6557. [DOI] [PMC free article] [PubMed]
  • 83.Embleton, M.L., A.V. Vologodskii and S.E. Halford.: Dynamics of DNA Loop Capture by the SfiI Restriction Endonuclease on Supercoiled and Relaxed DNA. J. Mol. Bio.339 (2004), 53–66. [DOI] [PubMed]
  • 84.Bussiek, M., K. Klenin and J. Langowski.: Kinetics of site-site interactions in Supercoiled DNA with bent sequences. J. Mol. Biol.322 (2002), 707–718. [DOI] [PubMed]
  • 85.Pfannschmidt, C. and J. Langowski. Superhelix organization by DNA curvature as measured through site-specific labeling. J Mol Biol.275 (1998), 601–611. [DOI] [PubMed]
  • 86.Yang, Y., T.P. Westcott, S.C. Pedersen, I. Tobias and W.K. Olson.: Effects of Localized Bending on DNA Supercoiling. Trends in Biochemical Sciences20 (1995), 313–319. [DOI] [PubMed]
  • 87.Travers, A. and G. Muskhelishvili.: DNA supercoiling - a global transcriptional regulator for enterobacterial growth? Nature Reviews – Microbiology3 (2005), 157–169. [DOI] [PubMed]
  • 88.Krasilnikov, A.S., A. Podtelezhnikov, A. Vologodskii and S. M. Mirkin.: Large-scale Effects of Transcriptional DNA Supercoiling in Vivo. J. Mol. Bio.292 (1999), 1149–1160. [DOI] [PubMed]
  • 89.Chen, C-C. and H-Y. Wu.: Transcription-driven DNA supercoiling and gene expression control. Frontiers in Bioscience8 (2003), 430–439. [DOI] [PubMed]

Articles from Journal of Biological Physics are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES