Abstract
Methods for the experimental and clinical investigation of cardiac arrhythmias are limited to inferring propagation within the myocardium, from surface measurements, or from electrodes at a few sites within the cardiac wall. Biophysically and anatomically detailed computational models of cardiac tissues offer a powerful way for studying the electrical propagation processes and arrhythmias within the virtual heart. We use virtual tissues to study and visualise the effects of patho- and physiological conditions, and pharmacological interventions on transmural propagation in the virtual ventricular walls. Class III drug actions are quantitatively explained by changes induced in the transmural dispersion of action potential duration. We illustrate the automated construction of a virtual anisotropic ventricle from Diffusion Tensor MRI for individual hearts, and use it to explore mechanisms leading to ventricular fibrillation. The virtual ventricular wall provides an effective tool for exploring, evaluating and visualising processes during the initiation and maintenance of ventricular arrhythmias.
Key words: cardiac arrhythmias, Diffusion Tensor MRI, Ventricular fibrillation (VF), ventricular wall, virtual tissues
References
- 1.Li, D., Li, C.Y., Yong, A.C., Kilpatrick, D.: Source of electrocardiographic ST changes in subendocardial ischemia. Circ. Res. 82, 957–970 (1998) [DOI] [PubMed]
- 2.Gray, R.A., Pertsov, A.M., Jalife, J.: Spatial and temporal organisation during cardiac fibrillation. Nature 392, 75–78 (1998) [DOI] [PubMed]
- 3.Valderrabano, M., Lee, M.H., Ohara, T., Lai, A.C., Fishbein, M.C., Lin, S.F., Karagueuzian, H.S., Chen, P.S.: Dynamics of intramural and transmural reentry during ventricular fibrillation in isolated swine ventricles. Circ. Res. 88, 839–848 (2001) [DOI] [PubMed]
- 4.Gray, R.A., Jalife, J., Panfilov, A.V., Baxter, W.T., Cabo, C., Davidenko, J. M., Pertsov, A.M.: Mechanisms of Cardiac Fibrillation. Science 270, 1222–1223 (1995) [DOI] [PubMed]
- 5.Panfilov, A., Pertsov, A.M.: Ventricular fibrillation: evolution of the multiple-wavelet hypothesis. Philos. Trans. Royal Soc. Lond. A - Math. Phys. Eng. Sci. 359, 1315–1325 (2001) [DOI]
- 6.Zaitsev, V., Berenfeld, O., Mironov, S.F., Jalife, J., Pertsov, A.M.: Distribution of excitation frequencies on the epicardial and endocardial surfaces of fibrillating ventricular wall of the sheep heart. Circ. Res. 86, 408–417 (2000) [DOI] [PubMed]
- 7.Garfinkel, A., Kim, Y.H., Voroshilovsky, O., Qu, Z.L., Kil, J.R., Lee, M.H., Karagueuzian, H.S., Weiss, J.N., Chen, P.S.: Preventing ventricular fibrillation by flattening cardiac restitution. Proc. Natl. Acad. Sci. U S A 97, 6061–6066 (2000) [DOI] [PMC free article] [PubMed]
- 8.Fenton, F.H., Karma, A.: Vortex dynamics in three-dimensional continuous myocardium with fibre rotation: Filament instability and fibrillation. Chaos 8, 20–47 (1998) [DOI] [PubMed]
- 9.Biktashev, V.N., Holden, A.V., Zhang, H.: Tension of organizing filaments of scroll waves. Philos. Trans. R. Soc. Lond. A 347, 611–630 (1994) [DOI]
- 10.Janse, M.J., Van-Cappelle, F.J.L., Morsink, H., Kleber, A.G., Wilms-Schopman, F., Cardinal, R., D’Alnoncourt, C.N., Durrer, D.: Flow of “injury” currents and patterns of excitation during early ventricular arrhythmias in acute regional myocardial ischaemia in isolated porcine and canine hearts. Evidence for two different arrhythmogenic mechanisms. Circ. Res. 47, 151–165 (1980) [DOI] [PubMed]
- 11.Ideker, R.E., Klein, G.J., Harrison, L., Smith, W.M., Kasell, J., Reimer, K.A., Wallace, A.G., Gallagher, J.J.: The transition to ventricular fibrillation induced by reperfusion after acute regional ischaemia in the dog: A period of organised epicardial activation. Circulation 63, 1371–1379 (1981) [DOI] [PubMed]
- 12.Biktashev, V.N., Holden, A.V., Mironov, S.F., Pertsov, A.M., Zaitsev, A.V.: Three-dimensional aspects of re-entry in experimental and numerical models of ventricular fibrillation. Int. J. Bifurc. & Chaos 9, 695–704 (1999) [DOI]
- 13.Kay, M.W., Amison, P.M., Rogers, J.M.: Three-dimensional surface reconstruction and panoramic optical mapping of large hearts. IEEE Trans. Biomed. Eng. 51, 1219–1229 (2004) [DOI] [PubMed]
- 14.Rogers, J.M.: Combined phase singularity and wavefront analysis for optical maps of ventricular fibrillation. IEEE Trans. Biomed. Eng. 51, 56–65 (2004) [DOI] [PubMed]
- 15.Clayton, R.H., Holden, A.V.: Filament behavior in a computational model of ventricular fibrillation in the canine heart. IEEE Trans. Biomed. Eng. 51, 28–34 (2004) [DOI] [PubMed]
- 16.Clayton, R.H., Holden, A.V.: Dispersion of cardiac action potential duration and the initiation of re-entry: A computational study. Biomed. Eng. Online 4, 11–16 (2005) [DOI] [PMC free article] [PubMed]
- 17.Xie, F., Qu, Z., Yang, J., Baher, A., Weiss, J.N., Garfinkel, A.: A simulation study of the effects of cardiac anatomy in ventricular fibrillation. J. Clin. Invest. 113,686–693 (2004) [DOI] [PMC free article] [PubMed]
- 18.Luo, C.H., Rudy, Y.: A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circ. Res. 74, 1071–1096 (1994) [DOI] [PubMed]
- 19.Noble, D., Rudy, Y.: Models of cardiac ventricular action potentials: iterative interaction between experiment and simulation. Philos. Trans. Royal Soc. Lond. A - Math. Phys. Eng. Sci. 359, 1127–1142 (2001) [DOI]
- 20.Boyett, M.R., Jue Li, Inada, S., Dobrzynski, H., Schneider, J.E., Holden, A.V., Zhang, H.: Imaging the heart: computer 3-dimensional anatomic models of the heart. J. Electrocardiol. 38, 113–120 (2005) [DOI] [PubMed]
- 21.LeGrice, I.J., Hunter, P.J., Smaill, B.H.: Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am. J. Physiol., Heart Circ. Physiol. 269, H571–H582 (1997) [DOI] [PubMed]
- 22.Nielson, P.M.F., LeGrice, I.J., Smaill, B.H., Hunter, P.J.: Mathematical model of the geometry and fibrous structure of the heart. Am. J. Physiol., Heart Circ. Physiol. 260, H1365–H1378 (1991) [DOI] [PubMed]
- 23.Kohl, P., Noble, D., Winslow, R.L., Hunter, P.J.: Computational modelling of biological systems: tools and visions. Philos. Trans. R. Soc., A 358, 579–610 (2000) [DOI]
- 24.Aslanidi, O.V., Clayton, R.H., Lambert, J.L., Holden, A.V.: Dynamical and cellular electrophysiological mechanisms of ECG changes during ischaemia. J. Theor. Biol. 237, 369–381 (2005) [DOI] [PubMed]
- 25.Jack, J.J.B., Noble, D., Tsien, R.W.: Electric Current Flow in Excitable Cells. Clarendon, Oxford (1975)
- 26.Panfilov, A.V., Holden, A.V.: Computational Biology of the Heart. Wiley, Chichester (1997)
- 27.Antzelevitch, C., Yan, G.X., Shimizu, W.: Transmural dispersion of repolarization and arrhythmogenicity: the Brugada syndrome versus the long QT syndrome. J. Electrocardiol. 32, 158–165 (1999) [DOI] [PubMed]
- 28.Aslanidi, O.V., Bailey, A., Biktashev, V.N., Holden, A.V.: Enhanced self-termination of re-entrant arrhythmias as a pharmacological strategy for antiarrhythmic action. Chaos 12, 843–851 (2002) [DOI] [PubMed]
- 29.Viswanathan, P.C., Rudy, Y.: Cellular arrhythmogenic effects of congenital and acquired long-QT syndrome in the heterogeneous myocardium. Circulation 101, 1192–1198 (2000) [DOI] [PubMed]
- 30.Gima, K., Rudy, Y.: Ionic current basis of electrocardiographic waveforms – a model study. Circ. Res. 90, 889–896 (2002) [DOI] [PMC free article] [PubMed]
- 31.Basser, P.J., Mattiello, J., LeBihan, D.: Estimation of the effective self-diffusion tensor from the NMR spin echo. J. Magn. Reson. B. 30, 201–206 (1994) [DOI] [PubMed]
- 32.Hsu, E.W., Muzikant, A.L., Matulevicius, S.A., Penland, R.C., Henriquez, S.C.: Magnetic resonance myocardial fiber-orienation mapping with direct histological correlation. Am. J. Physiol., Heart Circ. Physiol 274, H1627–H1634 (1998) [DOI] [PubMed]
- 33.Holmes, A.A., Scollan, D.F., Winslow, R.L.: Direct histological validation of diffusion tensor MRI in formaldehyde-fixed myocardium. J. Magn. Reson. 44, 157–161 (2000) [DOI] [PubMed]
- 34.Scollan, D.F., Holmes, A., Winslow, R.L., Forder, J.: Histological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging. Am. J. Physiol., Heart Circ. Physiol. 275, H2308–H2318 (1998) [DOI] [PubMed]
- 35.Sicouri, S., Moro, S., Litovsky, S., Elizari, M.V., Antzelevitch, C.: Chronic amiodarone reduces transmural dispersion of repolarization in the canine heart. J. Cardiovasc. Electrophysiol. 8, 1269–1279 (1997) [DOI] [PubMed]
- 36.Akar, F.G., Yan, G.-X., Antzelevitch, C., Rosenbaum, D.S.: Unique topographical distribution of M cells underlies re-entrant mechanism of Torsade de Pointes in the Long-QT syndrome. Circulation 105, 1247–1253 (2002) [DOI] [PubMed]
- 37.Drouin, E., Lande, G., Charpentier, F.: Amiodarone reduces transmural heterogeneity of repolarization in the human heart. J. Am. Coll. Cardiol. 32, 1063–1067 (1998) [DOI] [PubMed]
- 38.Biktashev, V.N., Holden, A.V.: Characterization of patterned irregularity in locally interacting, spatially extended systems: Ventricular fibrillation. Chaos 11, 653–664 (2001) [DOI] [PubMed]
- 39.Witkowski, F.X., Leon, L.J., Penkoske, P.A., Clark, R.B., Spano, M.L., Ditto, W.L., Giles, W.R.: A method for visualization of ventricular fibrillation: Design of a cooled fiber optically coupled image intensified CCD data acquisition system incorporating wavelet shrinkage based adaptive filtering. Chaos 8, 94–102 (1998) [DOI] [PubMed]
- 40.Panfilov, A.: Three-dimensional organization of electrical turbulence in the heart. Phys. Rev. E 59, R6251–R6254 (1999) [DOI] [PubMed]
- 41.Weiss, J.N., Chen., P.-S., Qu, Z., Karagueuzian, H.S., Garfinkel, A.: Ventricular fibrillation – how do we stop the waves from breaking? Cir. Res. 87, 1103–1107 (2000) [DOI] [PubMed]
- 42.Huikuri, H.V., Castellanos, A., Myerburg, R.J.: Sudden death due to cardiac arrhythmias. N. Engl. J. Med. 345, 1473–1482 (2001) [DOI] [PubMed]