Abstract
Over the past decade a number of bioinformatics tools have been developed that use genomic sequences as input to predict to which parts of a microbe the immune system will react, the so-called epitopes. Many predicted epitopes have later been verified experimentally, demonstrating the usefulness of such predictions. At the same time, simulation models have been developed that describe the dynamics of different immune cell populations and their interactions with microbes. These models have been used to explain experimental findings where timing is of importance, such as the time between administration of a vaccine and infection with the microbe that the vaccine is intended to protect against. In this paper, we outline a framework for integration of these two approaches. As an example, we develop a model in which HIV dynamics are correlated with genomics data. For the first time, the fitness of wild type and mutated virus are assessed by means of a sequence-dependent scoring matrix, derived from a BLOSUM matrix, that links protein sequences to growth rates of the virus in the mathematical model. A combined bioinformatics and systems biology approach can lead to a better understanding of immune system-related diseases where both timing and genomic information are of importance.
Key words: mathematical modelling, HIV, bioinformatics, simulation, immunology, immune system
References
- 1.Holmdahl, R., Bockermann, R., Backlund, J., Yamada, H.: The molecular pathogenesis of collagen-induced arthritis in mice - a model for rheumatoid arthritis. Ageing Res. Rev. 1, 135–147 (2002) [DOI] [PubMed]
- 2.Burroughs, N.J., de Boer, R.J., Kesmir, C.: Discriminating self from nonself with short peptides from large proteomes. Immunogenetics 56, 311–320 (2004) [DOI] [PubMed]
- 3.Kohler, B., Puzone, R., Seiden, P.E., Celada, F.: A systematic approach to vaccine complexity using an automaton model of the cellular and humoral immune system. I. Viral characteristics and polarized responses. Vaccine 19, 862–876 (2000) [DOI] [PubMed]
- 4.Seiden, P.E., Celada, F.: A model for simulating cognate recognition and response in the immune system. J. Theor. Biol. 158, 329–357 (1992) [DOI] [PubMed]
- 5.Pappalardo, F., Lollini, P.L., Castiglione, F., Motta, S.: Modeling and simulation of cancer immunoprevention vaccine. Bioinformatics 21, 2891–2897 (2005) [DOI] [PubMed]
- 6.Ferguson, N.M., deWolf, F., Ghani, A.C., Fraser, C., Donnelly, C.A., Reiss, P., Lange, J.M., Danner, S.A., Garnett, G.P., Goudsmit, J., Anderson, R.M.: Antigen-driven CD4+ T cell and HIV-1 dynamics: residual viral replication under highly active antiretroviral therapy. Proc. Natl. Acad. Sci. USA 96, 15167–15172 (1999) [DOI] [PMC free article] [PubMed]
- 7.De Boer, R.J., Homann, D., Perelson, A.S.: Different dynamics of CD4+ and CD8+ T cell responses during and after acute lymphocytic choriomeningitis virus infection. J. Immunol. 171, 3928–3935 (2003) [DOI] [PubMed]
- 8.De Boer, R.J., Mohri, H., Ho, D.D., Perelson, A.S.: Estimating average cellular turnover from 5-bromo-2-deoxyuridine (BrdU) measurements. Proc. Biol. Sci. 270, 849–858 (2003) [DOI] [PMC free article] [PubMed]
- 9.Fraser, C., Ferguson, N.M., De Wolf, F., Ghani, A.C., Garnett, G.P., Anderson, R.M.: Antigen-driven T-cell turnover. J. Theor. Biol. 219, 177–192 (2002) [DOI] [PubMed]
- 10.Takaku, T., Ohyashiki, J.H., Zhang, Y., Ohyashiki, K.: Estimating immunoregulatory gene networks in human herpesvirus type 6-infected T cells. Biochem. Biophys. Res. Commun. 336, 469–477 (2005) [DOI] [PubMed]
- 11.Brusic, V., Petrovsky, N.: Immunoinformatics - the new kid in town. Novartis Found Symp. 254, 3–13 (2003); discussion 13–22, 98–101, 250–102 [PubMed]
- 12.Kirschner, D., Marino, S.: Mycobacterium tuberculosis as viewed through a computer. Trends Microbiol. 13, 206–211 (2005) [DOI] [PubMed]
- 13.Romanyukha, A.A., Rudnev, S.G., Sidorov, I.A.: Energy cost of infection burden: An approach to understanding the dynamics of host–pathogen interactions. J. Theor. Biol. (2005) [DOI] [PubMed]
- 14.Lund, O., Lund, O.S., Gram, G., Nielsen, S.D., Schonning, K., Nielsen, J.O., Hansen, J.E., Mosekilde, E.: Gene therapy of T helper cells in HIV infection: mathematical model of the criteria for clinical effect. Bull. Math Biol. 59, 725–745 (1997) [DOI] [PubMed]
- 15.Scherer, A., Noest, A., de Boer, R.J.: Activation-threshold tuning in an affinity model for the T-cell repertoire. Proc. Biol. Sci. 271, 609–616 (2004) [DOI] [PMC free article] [PubMed]
- 16.Warrender, C., Forrest, S., Segel, L.: Homeostasis of peripheral immune effectors. Bull. Math Biol. 66, 1493–1514 (2004) [DOI] [PubMed]
- 17.Jansson, A., Barnes, E., Klenerman, P., Harlen, M., Sorensen, P., Davis, S.J., Nilsson, P.: A theoretical framework for quantitative analysis of the molecular basis of costimulation. J. Immunol. 175, 1575–1585 (2005) [DOI] [PubMed]
- 18.McKeithan, T.W.: Kinetic proofreading in T-cell receptor signal transduction. Proc. Natl. Acad. Sci. USA 92, 5042–5046 (1995) [DOI] [PMC free article] [PubMed]
- 19.Snyder, J.T., Belyakov, I.M., Dzutsev, A., Lemonnier, F., Berzofsky, J.A.: Protection against lethal vaccinia virus challenge in HLA-A2 transgenic mice by immunization with a single CD8+ T-cell peptide epitope of vaccinia and variola viruses. J. Virol. 78, 7052–7060 (2004) [DOI] [PMC free article] [PubMed]
- 20.Lund, O., Nielsen, M., Lundegaard, C., Kesmir, C., Brunak, S.: Immunological bioinformatics. MIT Press, Cambridge, Massachusetts (2005)
- 21.Nielsen, M., Lundegaard, C., Worning, P., Hvid, C.S., Lamberth, K., Buus, S., Brunak, S., Lund, O.: Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach. Bioinformatics 20, 1388–1397 (2004) [DOI] [PubMed]
- 22.Sturniolo, T., Bono, E., Ding, J., Raddrizzani, L., Tuereci, O., Sahin, U., Braxenthaler, M., Gallazzi, F., Protti, M.P., Sinigaglia, F., Hammer, J.: Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices. Nat. Biotechnol. 17, 555–561 (1999) [DOI] [PubMed]
- 23.Larsen, M.V., Lundegaard, C., Lamberth, K., Buus, S., Brunak, S., Lund, O., Nielsen, M.: An integrative approach to CTL epitope prediction: a combined algorithm integrating MHC class I binding, TAP transport efficiency, and proteasomal cleavage predictions. Eur. J. Immunol. 35, 2295–2303 (2005) [DOI] [PubMed]
- 24.Hopp, T.P., Woods, K.R.: A computer program for predicting protein antigenic determinants. Mol. Immunol. 20, 483–489 (1983) [DOI] [PubMed]
- 25.Odorico, M., Pellequer, J.L.: BEPITOPE: predicting the location of continuous epitopes and patterns in proteins. J. Mol. Recognit. 16, 20–22 (2003) [DOI] [PubMed]
- 26.Perelson, A.S.: Modelling viral and immune system dynamics. Nat. Rev. Immunol. 2, 28–36 (2002) [DOI] [PubMed]
- 27.Tsomides, T.J., Aldovini, A., Johnson, R.P., Walker, B.D., Young, R.A., Eisen, H.N.: Naturally processed viral peptides recognized by cytotoxic T lymphocytes on cells chronically infected by human immunodeficiency virus type 1. J. Exp. Med. 180, 1283–1293 (1994) [DOI] [PMC free article] [PubMed]
- 28.Borghans, J.A., de Boer, R.J., Segel, L.A.: Extending the quasi-steady state approximation by changing variables. Bull. Math Biol. 58, 43–63 (1996) [DOI] [PubMed]
- 29.Tzafriri, A.R., Edelman, E.R.: The total quasi-steady-state approximation is valid for reversible enzyme kinetics. J. Theor. Biol. 226, 303–313 (2004) [DOI] [PubMed]
- 30.Tzafriri, A.R., Edelman, E.R.: On the validity of the quasi-steady state approximation of bimolecular reactions in solution. J. Theor. Biol. 233, 343–350 (2005) [DOI] [PubMed]
- 31.Strain, M.C., Richman, D.D., Wong, J.K., Levine, H.: Spatiotemporal dynamics of HIV propagation. J. Theor. Biol. 218, 85–96 (2002) [DOI] [PubMed]
- 32.Dixit, N.M., Perelson, A.S.: HIV dynamics with multiple infections of target cells. Proc. Natl. Acad. Sci. USA 102, 8198–8203 (2005) [DOI] [PMC free article] [PubMed]
- 33.von Boehmer, H., Hafen, K.: The life span of naive alpha/beta T cells in secondary lymphoid organs. J. Exp. Med. 177, 891–896 (1993) [DOI] [PMC free article] [PubMed]
- 34.Zhang, Z.Q., Notermans, D.W., Sedgewick, G., Cavert, W., Wietgrefe, S., Zupancic, M., Gebhard, K., Henry, K., Boies, L., Chen, Z., Jenkins, M., Mills, R., McDade, H., Goodwin, C., Schuwirth, C.M., Danner, S.A., Haase, A.T.: Kinetics of CD4+ T cell repopulation of lymphoid tissues after treatment of HIV-1 infection. Proc. Natl. Acad. Sci. USA 95, 1154–1159 (1998) [DOI] [PMC free article] [PubMed]
- 35.Henikoff, S., Henikoff, J.G.: Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. USA 89, 10915–10919 (1992) [DOI] [PMC free article] [PubMed]
- 36.Breckling, B.: Individual-based modelling: potentials and limitations. ScientificWorldJournal 2, 1044–1062 (2002) [DOI] [PMC free article] [PubMed]
- 37.Galvani, A.P.: The role of mutation accumulation in HIV progression. Proc. Biol. Sci. 272, 1851–1858 (2005) [DOI] [PMC free article] [PubMed]
- 38.Ribeiro, R.M., Hazenberg, M.D., Perelson, A.S., Davenport, M.P.: Naive and memory cell turnover as drivers of CCR5-to-CXCR4 tropism switch in human immunodeficiency virus type 1: implications for therapy. J. Virol. 80, 802–809 (2006) [DOI] [PMC free article] [PubMed]
- 39.Borchers, A.T., Keen, C.L., Gershwin, M.E.: Hope for the hygiene hypothesis: when the dirt hits the fan. J. Asthma 42, 225–247 (2005) [DOI] [PubMed]
- 40.Gonzalez, P.P., Cardenas, M., Camacho, D., Franyuti, A., Rosas, O., Lagunez-Otero, J.: Cellulat: an agent-based intracellular signalling model. Biosystems 68, 171–185 (2003) [DOI] [PubMed]
- 41.RAC (Recombinant DNA Advisory Committee), appendix B, http://www.od.nih.gov/oba/vac/guidelines_02/APPENDIX_b