Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1999 Mar 2;96(5):1828–1833. doi: 10.1073/pnas.96.5.1828

Tight frames of k-plane ridgelets and the problem of representing objects that are smooth away from d-dimensional singularities in Rn

David L Donoho 1
PMCID: PMC26696  PMID: 10051554

Abstract

For each pair (n, k) with 1 ≤ k < n, we construct a tight frame (ρλ : λ ∈ Λ) for L2 (Rn), which we call a frame of k-plane ridgelets. The intent is to efficiently represent functions that are smooth away from singularities along k-planes in Rn. We also develop tools to help decide whether k-plane ridgelets provide the desired efficient representation. We first construct a wavelet-like tight frame on the X-ray bundle χn,k—the fiber bundle having the Grassman manifold Gn,k of k-planes in Rn for base space, and for fibers the orthocomplements of those planes. This wavelet-like tight frame is the pushout to χn,k, via the smooth local coordinates of Gn,k, of an orthonormal basis of tensor Meyer wavelets on Euclidean space Rk(nk) × Rnk. We then use the X-ray isometry [Solmon, D. C. (1976) J. Math. Anal. Appl. 56, 61–83] to map this tight frame isometrically to a tight frame for L2(Rn)—the k-plane ridgelets. This construction makes analysis of a function fL2(Rn) by k-plane ridgelets identical to the analysis of the k-plane X-ray transform of f by an appropriate wavelet-like system for χn,k. As wavelets are typically effective at representing point singularities, it may be expected that these new systems will be effective at representing objects whose k-plane X-ray transform has a point singularity. Objects with discontinuities across hyperplanes are of this form, for k = n − 1.

Keywords: X-ray transform, ridge function, wavelets


Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES