Abstract
Broth cultures and washed cells of 13 of 24 bovine isolates of Fusobacterium necrophorum aggregated human platelets in platelet-rich plasma. The cell-free culture fluid was inactive. Bacteria stored at 4 degrees C in saline remained active for at least 3 months, but they did not release activity into the storage solution. Aggregation typically began within 1 min after the addition of 10(3) bacteria to 10(3) platelets was complete within 5.5 min. Assays for cytosolic lactic dehydrogenase revealed that platelet lysis did not occur. The release of [14C]serotonin from platelets preincubated with this amine accompanied aggregation, indicating that this was a typical aggregation-degranulation reaction. Platelet aggregation was inhibited by EDTA (88% at 2.0 mM), aspirin (75% inhibition at 1.0 mM), and quinacrine (80% inhibition at 0.25 mM). Thus the reaction was an ion-dependent, cyclooxygenase-sensitive event. Gel-filtered platelets were less sensitive to aggregation than were platelets in plasma, but this sensitivity was fully restored by the addition of plasma and partially restored with fibrinogen. Biotyping of the cultures revealed that none of the avirulent, B-type strains of F. necrophorum could aggregate platelets, whereas 13 of 16 virulent A type strains were positive. These results suggest that platelet aggregation by F. necrophorum is related to the virulence of this organism.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BERNHEIMER A. W., SCHWARTZ L. L. EFFECT OF STAPHYLOCOCCAL AND OTHER BACTERIAL TOXINS ON PLATELETS IN VITRO. J Pathol Bacteriol. 1965 Jan;89:209–223. doi: 10.1002/path.1700890121. [DOI] [PubMed] [Google Scholar]
- BORN G. V., CROSS M. J. THE AGGREGATION OF BLOOD PLATELETS. J Physiol. 1963 Aug;168:178–195. doi: 10.1113/jphysiol.1963.sp007185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BRECHER G., SCHNEIDERMAN M., CRONKITE E. P. The reproducibility and constancy of the platelet count. Am J Clin Pathol. 1953 Jan;23(1):15–26. doi: 10.1093/ajcp/23.1.15. [DOI] [PubMed] [Google Scholar]
- Beachey E. H., Chiang T. M., Ofek I., Kang A. H. Interaction of lipoteichoic acid of group A streptococci with human platelets. Infect Immun. 1977 May;16(2):649–654. doi: 10.1128/iai.16.2.649-654.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Czuprynski C. J., Balish E. Interaction of rat platelets with Listeria monocytogenes. Infect Immun. 1981 Jul;33(1):103–108. doi: 10.1128/iai.33.1.103-108.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Des Prez R. M., Steckley S., Stroud R. M., Hawiger J. Interaction of Histoplasma capsulatum with human platelets. J Infect Dis. 1980 Jul;142(1):32–39. doi: 10.1093/infdis/142.1.32. [DOI] [PubMed] [Google Scholar]
- Falkler W. A., Jr, Burger B. W. Microbial surface interactions: reduction of the haemagglutination activity of the oral bacterium Fusobacterium nucleatum by absorption with Streptococcus and Bacteroides. Arch Oral Biol. 1981;26(12):1015–1025. doi: 10.1016/0003-9969(81)90112-6. [DOI] [PubMed] [Google Scholar]
- Falkler W. A., Jr, Mongiello J. R., Burger B. W. Haemagglutination inhibition and aggregation of Fusobacterium nucleatum by human salivary mucinous glycoproteins. Arch Oral Biol. 1979;24(7):483–489. doi: 10.1016/0003-9969(79)90124-9. [DOI] [PubMed] [Google Scholar]
- Greenblatt J., Boackle R. J., Schwab J. H. Activation of the alternate complement pathway by peptidoglycan from streptococcal cell wall. Infect Immun. 1978 Jan;19(1):296–303. doi: 10.1128/iai.19.1.296-303.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hawiger J., Steckley S., Hammond D., Cheng C., Timmons S., Glick A. D., Des Prez R. M. Staphylococci-induced human platelet injury mediated by protein A and immunoglobulin G Fc fragment receptor. J Clin Invest. 1979 Oct;64(4):931–937. doi: 10.1172/JCI109559. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hofstad T. Pathogenicity of anaerobic gram-negative rods: possible mechanisms. Rev Infect Dis. 1984 Mar-Apr;6(2):189–199. doi: 10.1093/clinids/6.2.189. [DOI] [PubMed] [Google Scholar]
- Holmsen H. Classification and possible mechanisms of action of some drugs that inhibit platelet aggregation. Ser Haematol. 1975;8(3):50–80. [PubMed] [Google Scholar]
- Holmsen H., Setkowsky Dangelmaier C. A. Adenine nucleotide metabolism of blood platelets. X. Formaldehyde stops centrifugation-induced secretion after A23187-stimulation and causes breakdown of metabolic ATP. Biochim Biophys Acta. 1977 Mar 29;497(1):46–61. doi: 10.1016/0304-4165(77)90138-6. [DOI] [PubMed] [Google Scholar]
- Johnson M. K., Boese-Marrazzo D., Pierce W. A., Jr Effects of pneumolysin on human polymorphonuclear leukocytes and platelets. Infect Immun. 1981 Oct;34(1):171–176. doi: 10.1128/iai.34.1.171-176.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KANTOR F. S. FIBRINOGEN PRECIPITATION BY STREPTOCOCCAL M PROTEIN. I. IDENTITY OF THE REACTANTS, AND STOICHIOMETRY OF THE REACTION. J Exp Med. 1965 May 1;121:849–859. doi: 10.1084/jem.121.5.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kurpiewski G. E., Forrester L. J., Campbell B. J., Barrett J. T. Platelet aggregation by Streptococcus pyogenes. Infect Immun. 1983 Feb;39(2):704–708. doi: 10.1128/iai.39.2.704-708.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lages B., Scrutton M. C., Holmsen H. Studies on gel-filtered human platelets: isolation and characterization in a medium containing no added Ca2+, Mg2+, or K+. J Lab Clin Med. 1975 May;85(5):811–825. [PubMed] [Google Scholar]
- Maisch P. A., Calderone R. A. Role of surface mannan in the adherence of Candida albicans to fibrin-platelet clots formed in vitro. Infect Immun. 1981 Apr;32(1):92–97. doi: 10.1128/iai.32.1.92-97.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mills D. C., Robb I. A., Roberts G. C. The release of nucleotides, 5-hydroxytryptamine and enzymes from human blood platelets during aggregation. J Physiol. 1968 Apr;195(3):715–729. doi: 10.1113/jphysiol.1968.sp008484. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morrison D. C., Kline L. F., Oades Z. G., Henson P. M. Mechanisms of lipopolysaccharide-initiated rabbit platelet responses: alternative complement pathway dependence of the lytic response. Infect Immun. 1978 Jun;20(3):744–751. doi: 10.1128/iai.20.3.744-751.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nygren H., Dahlén G., Nilsson L. A. Human complement activation by lipopolysaccharides from bacteroides oralis, fusobacterium nucleatum, and veillonella parvula. Infect Immun. 1979 Nov;26(2):391–396. doi: 10.1128/iai.26.2.391-396.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'brien J. R. Platelet aggregation: Part I Some effects of the adenosine phosphates, thrombin, and cocaine upon platelet adhesiveness. J Clin Pathol. 1962 Sep;15(5):446–452. doi: 10.1136/jcp.15.5.446. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ouyang C., Teng C. M. The action mechanism of the purified platelet aggregation principle of Trimeresurus mucrosquamatus venom. Thromb Haemost. 1979 May 25;41(3):475–490. [PubMed] [Google Scholar]
- Rittenhouse-Simmons S., Deykin D. The activation by Ca2+ of platelet phospholipase A2. Effects of dibutyryl cyclic adenosine monophosphate and 8-(N,N-diethylamino)-octyl-3,4,5-trimethoxybenzoate. Biochim Biophys Acta. 1978 Nov 1;543(4):409–422. doi: 10.1016/0304-4165(78)90296-9. [DOI] [PubMed] [Google Scholar]
- Rotta J., Rýc M., Masek K., Zaoral M. Biological activity of synthetic subunits of streptococcus peptidoglycan. I. Pyrogenic and thrombocytolytic activity. Exp Cell Biol. 1979;47(4):258–268. doi: 10.1159/000162944. [DOI] [PubMed] [Google Scholar]
- Rourke F. J., Fan S. S., Wilder M. S. Anticomplementary activity of tuberculin: relationship to platelet aggregation and lytic response. Infect Immun. 1979 Jan;23(1):160–167. doi: 10.1128/iai.23.1.160-167.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scanlan C. M., Berg J. N., Fales W. H. Comparative in vitro leukotoxin production of three bovine strains of Fusobacterium necrophorum. Am J Vet Res. 1982 Aug;43(8):1329–1333. [PubMed] [Google Scholar]
- Schmidt K. H., Köhler W. Interaction of streptococcal cell wall components with fibrinogen. I. adsorption of fibrinogen by immobilized T-proteins of streptococcus pyogenes. Immunobiology. 1981;158(4):330–337. doi: 10.1016/S0171-2985(81)80004-6. [DOI] [PubMed] [Google Scholar]
- Sheth N. K., Kurup V. P., Barron B. A. The role of Aspergillus fumigatus antigens in blood coagulation and platelet function. Microbios. 1980;28(112):91–96. [PubMed] [Google Scholar]
- Skerl K. G., Calderone R. A., Sreevalsan T. Platelet interactions with Candida albicans. Infect Immun. 1981 Dec;34(3):938–943. doi: 10.1128/iai.34.3.938-943.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spaet T. H., Lejnieks I. A technique for estimation of platelet-collagen adhesion. Proc Soc Exp Biol Med. 1969 Dec;132(3):1038–1041. doi: 10.3181/00379727-132-34362. [DOI] [PubMed] [Google Scholar]
- Steffen E. K., Hentges D. J. Hydrolytic enzymes of anaerobic bacteria isolated from human infections. J Clin Microbiol. 1981 Aug;14(2):153–156. doi: 10.1128/jcm.14.2.153-156.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
