Abstract
Direct enzyme-linked immunosorbent assay methods offer several advantages in assessing past or recent exposure to cytomegalovirus (CMV) infection, but there persist many pitfalls in the use of these methods for determining specific immunoglobulin M (IgM). The efficiency of absorption of sera by IgG-coated latex beads, aggregated human IgG, or Staphylococcus aureus, i.e., for removing nonspecific CMV IgM activities, was evaluated in comparison with the effect of an anti-human IgG hyperimmune serum. Large routine series comprising serum samples from patients of various clinical groups and healthy individuals were examined. The CMV IgM-positive samples were at first treated with latex or aggregated IgG, but these absorptions left too many CMV IgM-positive individuals. S. aureus increased the nonspecific activity of some sera and, in other cases, removed or impaired specific IgM activities. The anti-IgG treatment caused the disappearance of nonspecific CMV IgM activities that had resisted the other treatments, whereas specific activities remained intact. Utilizing this method, only 1.03% of the routine series patients remained CMV IgM positive by the enzyme-linked immunosorbent assay, a figure in good agreement with a mean probability of CMV antibody acquisition of 0.33% for the population living in Belgium. On the other hand, in a series of patients who were investigated for serological response to several viruses, eight individuals displayed multiple IgM activities after anti-IgG treatment. In these cases, most IgM activities were found in patients who had IgG toward the related antigen for a long time before transient IgM was detected. This result implies that to assess a diagnosis of primary infection, it is necessary to examine serial specimens for IgG acquisition accompanying specific IgM.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Almeida J. D., Griffith A. H. Viral infections and rheumatic factor. Lancet. 1980 Dec 20;2(8208-8209):1361–1362. doi: 10.1016/s0140-6736(80)92419-8. [DOI] [PubMed] [Google Scholar]
- Ankerst J., Christensen P., Kjellén L., Kronvall G. A rountine diagnostic test for IgA and IgM antibodies to rubella virus: absorption of IgG with Staphylococcus aureus. J Infect Dis. 1974 Sep;130(3):268–273. doi: 10.1093/infdis/130.3.268. [DOI] [PubMed] [Google Scholar]
- Betts R. F. Cytomegalovirus infection in transplant patients. Prog Med Virol. 1982;28:44–64. [PubMed] [Google Scholar]
- Desmyter J., South M. A., Rawls W. E. The IgM antibody response in rubella during pregnancy. J Med Microbiol. 1971 Feb;4(1):107–114. doi: 10.1099/00222615-4-1-107. [DOI] [PubMed] [Google Scholar]
- Florin-Christensen A., Arana R. M., Morteo O. G., Roux M. E., Hubscher O. IgG, IgA, IgM, and IgD antiglobulins in juvenile rheumatoid arthritis. Ann Rheum Dis. 1974 Jan;33(1):32–34. doi: 10.1136/ard.33.1.32. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iannetti P., Balducci L., Businco L., Midulla M. Herpetic encephalitis with associated cytomegalovirus infection and myoclonus. Lancet. 1977 Dec 10;2(8050):1227–1228. doi: 10.1016/s0140-6736(77)90464-0. [DOI] [PubMed] [Google Scholar]
- Jankowski M. A., Gut W., Switalski L., Imbs D., Kańtoch M. IgM fluorescence antibodies in sera of pregnant women exposed to rubella. Arch Virol. 1979;60(2):123–130. doi: 10.1007/BF01348028. [DOI] [PubMed] [Google Scholar]
- Johnson P. M., Faulk W. P. Rheumatoid factor: its nature, specificity, and production in rheumatoid arthritis. Clin Immunol Immunopathol. 1976 Nov;6(3):414–430. doi: 10.1016/0090-1229(76)90094-5. [DOI] [PubMed] [Google Scholar]
- Kalimo K. O., Marttila R. J., Granfors K., Viljanen M. K. Solid-phase radioimmunoassay of human immunoglobulin M and immunoglobulin G antibodies against herpes simplex virus type 1 capsid, envelope, and excreted antigens. Infect Immun. 1977 Mar;15(3):883–889. doi: 10.1128/iai.15.3.883-889.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kangro H. O., Pattison J. R., Heath R. B. The detection of rubella-specific IgM antibodies by radioimmunoassay. Br J Exp Pathol. 1978 Dec;59(6):577–583. [PMC free article] [PubMed] [Google Scholar]
- Kurtz J. B., Malic A. Rubella-specific IgM detected by an antibody capture assay/ELISA technique. J Clin Pathol. 1981 Dec;34(12):1392–1395. doi: 10.1136/jcp.34.12.1392. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luna M. A., Lichtiger B. Disseminated toxoplasmosis and cytomegalovirus infection complicating Hodgkin's disease. Am J Clin Pathol. 1971 Apr;55(4):499–505. doi: 10.1093/ajcp/55.4.499. [DOI] [PubMed] [Google Scholar]
- Middeldorp J. M., Jongsma J., ter Haar A., Schirm J., The T. H. Detection of immunoglobulin M and G antibodies against cytomegalovirus early and late antigens by enzyme-linked immunosorbent assay. J Clin Microbiol. 1984 Oct;20(4):763–771. doi: 10.1128/jcm.20.4.763-771.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morgan-Capner P., Tedder R. S., Mace J. E. Rubella-specific IgM reactivity in sera from cases of infectious mononucleosis. J Hyg (Lond) 1983 Jun;90(3):407–413. doi: 10.1017/s0022172400029041. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nagington J. Cytomegalovirus antibody production in renal transplant patients. J Hyg (Lond) 1971 Dec;69(4):645–660. doi: 10.1017/s0022172400021926. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oill P. A., Fiala M., Schofferman J., Byfield P. E., Guze L. B. Cytomegalovirus mononucleosis in a healthy adult: association with hepatitis, secondary Epstein-Barr Virus antibody response and immunosuppression. Am J Med. 1977 Mar;62(3):413–417. doi: 10.1016/0002-9343(77)90840-3. [DOI] [PubMed] [Google Scholar]
- Palumbo P. E., Arvin A. M., Koropchak C. M., Wittek A. E. Investigation of varicella-zoster virus-infected cell proteins that elicit antibody production during primary varicella using the immune transfer method. J Gen Virol. 1984 Dec;65(Pt 12):2141–2147. doi: 10.1099/0022-1317-65-12-2141. [DOI] [PubMed] [Google Scholar]
- Preiksaitis J. K., Rosno S., Rasmussen L., Merigan T. C. Cytomegalovirus infection in heart transplant recipients: preliminary results of a controlled trial of intravenous gamma globulin. J Clin Immunol. 1982 Apr;2(2 Suppl):36S–41S. doi: 10.1007/BF00918365. [DOI] [PubMed] [Google Scholar]
- Ravaoarinoro M., Reginster M., Dormal A., Sondag-Thull D. Comparison between an enzyme linked immunosorbent assay and a complement fixation test in assessing the age-related acquisition of cytomegalovirus antibodies in groups of the population living in Belgium. Acta Clin Belg. 1984;39(1):6–12. doi: 10.1080/22953337.1984.11718974. [DOI] [PubMed] [Google Scholar]
- Reynolds D. W., Stagno S., Reynolds R., Alford C. A., Jr Perinatal cytomegalovirus infection: influence of placentally transferred maternal antibody. J Infect Dis. 1978 May;137(5):564–567. doi: 10.1093/infdis/137.5.564. [DOI] [PubMed] [Google Scholar]
- Robertson P. W., Kertesz V., Cloonan M. J. Elimination of false-positive cytomegalovirus immunoglobulin M-fluorescent-antibody reactions with immunoglobulin M serum fractions. J Clin Microbiol. 1977 Aug;6(2):174–175. doi: 10.1128/jcm.6.2.174-175.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schauf V., Strelkauskas A. J., Deveikis A. Alteration of lymphocyte subpopulations with cytomegalovirus infection in infancy. Clin Exp Immunol. 1976 Dec;26(3):478–483. [PMC free article] [PubMed] [Google Scholar]
- Shillitoe E. J. Decline in specificity of the ELISA due to storage of serum, and its recovery by adsorption with kaolin. J Virol Methods. 1982 May;4(4-5):241–248. doi: 10.1016/0166-0934(82)90070-2. [DOI] [PubMed] [Google Scholar]
- Shirodaria P. V., Fraser K. B., Stanford F. Secondary fluorescent staining of virus antigens by rheumatoid factor and fluorescein-conjugated anti-IgM. Ann Rheum Dis. 1973 Jan;32(1):53–57. doi: 10.1136/ard.32.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sutherland S., Briggs J. D. The detection of antibodies to cytomegalovirus in the sera of renal transplant patients by an IgM antibody capture assay. J Med Virol. 1983;11(2):147–159. doi: 10.1002/jmv.1890110209. [DOI] [PubMed] [Google Scholar]
- Torfason E. G., Diderholm H. False RIA IgM titres to herpes simplex virus and cytomegalovirus: factors causing them, and their absorption by protein A-Sepharose/IgG-protein A-Sepharose. J Med Virol. 1982;10(3):157–170. doi: 10.1002/jmv.1890100302. [DOI] [PubMed] [Google Scholar]
- Winston D. J., Ho W. G., Rasmussen L. E., Lin C. H., Chu H. L., Merigan T. C., Gale R. P. Use of intravenous immune globulin in patients receiving bone marrow transplants. J Clin Immunol. 1982 Apr;2(2 Suppl):42S–47S. doi: 10.1007/BF00918366. [DOI] [PubMed] [Google Scholar]
- Yolken R. H., Leister F. J. Enzyme immunoassays for measurement of cytomegalovirus immunoglobulin M antibody. J Clin Microbiol. 1981 Oct;14(4):427–432. doi: 10.1128/jcm.14.4.427-432.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ziegelmaier R., Behrens F., Enders G. Class-specific determination of antibodies against cytomegalo (CMV) and rubella virus by ELISA. J Biol Stand. 1981 Jan;9(1):23–33. doi: 10.1016/s0092-1157(81)80062-5. [DOI] [PubMed] [Google Scholar]
- Ziola B., Meurman O., Matikainen M. T., Salmi A., Kalliomäki J. L. Determination of human immunoglobulin M rheumatoid factor by a solid-phase radioimmunoassay which uses human immunoglobulin G in antigen-antibody complexes. J Clin Microbiol. 1978 Aug;8(2):134–141. doi: 10.1128/jcm.8.2.134-141.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]